Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Iván Angiono, Agustín García Iglesias

ABSTRACT

We classify finite-dimensional pointed Hopf algebras with abelian coradical, up to isomorphism, and show that they are cocycle deformations of the associated graded Hopf algebra. More generally, for any braided vector space of diagonal type V with a principal realization in the category of Yetter–Drinfeld modules of a cosemisimple Hopf algebra H and such that the Nichols algebra B(V) is finite-dimensional, thus presented by a finite set G of relations, we define a family of Hopf algebras u(λ), λ∈kG, which are cocycle deformations of B(V)#H and such that gru(λ)≃B(V)#H. More... »

PAGES

5

Journal

TITLE

Selecta Mathematica

ISSUE

1

VOLUME

25

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00029-019-0452-4

DOI

http://dx.doi.org/10.1007/s00029-019-0452-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111949059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of C\u00f3rdoba", 
          "id": "https://www.grid.ac/institutes/grid.10692.3c", 
          "name": [
            "FaMAF-CIEM (CONICET), Universidad Nacional de C\u00f3rdoba, Medina Allende s/n, Ciudad Universitaria, 5000, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Angiono", 
        "givenName": "Iv\u00e1n", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of C\u00f3rdoba", 
          "id": "https://www.grid.ac/institutes/grid.10692.3c", 
          "name": [
            "FaMAF-CIEM (CONICET), Universidad Nacional de C\u00f3rdoba, Medina Allende s/n, Ciudad Universitaria, 5000, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda Iglesias", 
        "givenName": "Agust\u00edn", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/00927872.2011.616429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000011288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-015-9341-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001937412", 
          "https://doi.org/10.1007/s00031-015-9341-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle-2011-0008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009867357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpaa.2013.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018341126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(78)90010-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029566077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879608825788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031187524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00927879908826704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038416973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2008.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046909052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11565-016-0264-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274577", 
          "https://doi.org/10.1007/s11565-016-0264-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11565-016-0264-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051274577", 
          "https://doi.org/10.1007/s11565-016-0264-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0012-9593(01)01082-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054581714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnw103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059692119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2010.171.375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071867222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2017.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083530741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/537/10566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089199439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-017-0113-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093110665", 
          "https://doi.org/10.1007/s13373-017-0113-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13373-017-0113-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093110665", 
          "https://doi.org/10.1007/s13373-017-0113-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708463"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We classify finite-dimensional pointed Hopf algebras with abelian coradical, up to isomorphism, and show that they are cocycle deformations of the associated graded Hopf algebra. More generally, for any braided vector space of diagonal type V with a principal realization in the category of Yetter\u2013Drinfeld modules of a cosemisimple Hopf algebra H and such that the Nichols algebra B(V) is finite-dimensional, thus presented by a finite set G of relations, we define a family of Hopf algebras u(\u03bb), \u03bb\u2208kG, which are cocycle deformations of B(V)#H and such that gru(\u03bb)\u2243B(V)#H.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00029-019-0452-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136551", 
        "issn": [
          "1022-1824", 
          "1420-9020"
        ], 
        "name": "Selecta Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations", 
    "pagination": "5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4fb915776c0fbe784fe3d0725ab1486b197526d198929a62bf8f26547585755d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00029-019-0452-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111949059"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00029-019-0452-4", 
      "https://app.dimensions.ai/details/publication/pub.1111949059"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60333_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00029-019-0452-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0452-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0452-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0452-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0452-4'


 

This table displays all metadata directly associated to this object as RDF triples.

117 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00029-019-0452-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N27c496ba1c374ee4818709f000e9cdca
4 schema:citation sg:pub.10.1007/s00031-015-9341-x
5 sg:pub.10.1007/s11565-016-0264-9
6 sg:pub.10.1007/s13373-017-0113-x
7 https://doi.org/10.1016/0001-8708(78)90010-5
8 https://doi.org/10.1016/j.aim.2008.08.005
9 https://doi.org/10.1016/j.jalgebra.2017.01.037
10 https://doi.org/10.1016/j.jpaa.2013.08.008
11 https://doi.org/10.1016/s0012-9593(01)01082-5
12 https://doi.org/10.1080/00927872.2011.616429
13 https://doi.org/10.1080/00927879608825788
14 https://doi.org/10.1080/00927879908826704
15 https://doi.org/10.1090/cbms/082
16 https://doi.org/10.1090/conm/537/10566
17 https://doi.org/10.1093/imrn/rnw103
18 https://doi.org/10.1515/crelle-2011-0008
19 https://doi.org/10.4007/annals.2010.171.375
20 schema:datePublished 2019-03
21 schema:datePublishedReg 2019-03-01
22 schema:description We classify finite-dimensional pointed Hopf algebras with abelian coradical, up to isomorphism, and show that they are cocycle deformations of the associated graded Hopf algebra. More generally, for any braided vector space of diagonal type V with a principal realization in the category of Yetter–Drinfeld modules of a cosemisimple Hopf algebra H and such that the Nichols algebra B(V) is finite-dimensional, thus presented by a finite set G of relations, we define a family of Hopf algebras u(λ), λ∈kG, which are cocycle deformations of B(V)#H and such that gru(λ)≃B(V)#H.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N547a260b034746f0ae2845c711ee6382
27 Na156f941867347b89dd7df39e3a9ef6b
28 sg:journal.1136551
29 schema:name Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations
30 schema:pagination 5
31 schema:productId N8444f95ede5a4433871fd763ae5dc9a9
32 Nc29722a40d0c4df7b31d42d19613f2ea
33 Ne4ce51a98c944b9397e1d89bbc80ceeb
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111949059
35 https://doi.org/10.1007/s00029-019-0452-4
36 schema:sdDatePublished 2019-04-11T10:58
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N6ddfc1e715ca463586ce8b2286bece58
39 schema:url https://link.springer.com/10.1007%2Fs00029-019-0452-4
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N27c496ba1c374ee4818709f000e9cdca rdf:first N911dd231cd5c4088bd536f1a09f5336a
44 rdf:rest Nac0e9983ea564e53b3218b031a7d80fe
45 N547a260b034746f0ae2845c711ee6382 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 N6ddfc1e715ca463586ce8b2286bece58 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N8444f95ede5a4433871fd763ae5dc9a9 schema:name readcube_id
50 schema:value 4fb915776c0fbe784fe3d0725ab1486b197526d198929a62bf8f26547585755d
51 rdf:type schema:PropertyValue
52 N88296e4bbad0495498004477e2c82311 schema:affiliation https://www.grid.ac/institutes/grid.10692.3c
53 schema:familyName García Iglesias
54 schema:givenName Agustín
55 rdf:type schema:Person
56 N911dd231cd5c4088bd536f1a09f5336a schema:affiliation https://www.grid.ac/institutes/grid.10692.3c
57 schema:familyName Angiono
58 schema:givenName Iván
59 rdf:type schema:Person
60 Na156f941867347b89dd7df39e3a9ef6b schema:volumeNumber 25
61 rdf:type schema:PublicationVolume
62 Nac0e9983ea564e53b3218b031a7d80fe rdf:first N88296e4bbad0495498004477e2c82311
63 rdf:rest rdf:nil
64 Nc29722a40d0c4df7b31d42d19613f2ea schema:name dimensions_id
65 schema:value pub.1111949059
66 rdf:type schema:PropertyValue
67 Ne4ce51a98c944b9397e1d89bbc80ceeb schema:name doi
68 schema:value 10.1007/s00029-019-0452-4
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1136551 schema:issn 1022-1824
77 1420-9020
78 schema:name Selecta Mathematica
79 rdf:type schema:Periodical
80 sg:pub.10.1007/s00031-015-9341-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001937412
81 https://doi.org/10.1007/s00031-015-9341-x
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/s11565-016-0264-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051274577
84 https://doi.org/10.1007/s11565-016-0264-9
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s13373-017-0113-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1093110665
87 https://doi.org/10.1007/s13373-017-0113-x
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0001-8708(78)90010-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029566077
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.aim.2008.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046909052
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.jalgebra.2017.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083530741
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jpaa.2013.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018341126
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s0012-9593(01)01082-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054581714
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1080/00927872.2011.616429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000011288
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/00927879608825788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031187524
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1080/00927879908826704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038416973
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/cbms/082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708463
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/conm/537/10566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089199439
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1093/imrn/rnw103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059692119
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1515/crelle-2011-0008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009867357
112 rdf:type schema:CreativeWork
113 https://doi.org/10.4007/annals.2010.171.375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071867222
114 rdf:type schema:CreativeWork
115 https://www.grid.ac/institutes/grid.10692.3c schema:alternateName National University of Córdoba
116 schema:name FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
117 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...