Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

Marco Antei, Indranil Biswas, Michel Emsalem, Fabio Tonini, Lei Zhang

ABSTRACT

We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack X over a field k. This is done by describing the Nori fundamental gerbe of an essentially finite cover of X. A similar result is also obtained for the S-fundamental gerbe. More... »

PAGES

18

References to SciGraph publications

  • 1982-07. The fundamental group-scheme in PROCEEDINGS - MATHEMATICAL SCIENCES
  • 2011-12. Vector bundles over normal varieties trivialized by finite morphisms in ARCHIV DER MATHEMATIK
  • 1983-06. The fundamental group-scheme of an abelian variety in MATHEMATISCHE ANNALEN
  • 1979. Introduction to Affine Group Schemes in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00029-019-0449-z

    DOI

    http://dx.doi.org/10.1007/s00029-019-0449-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112305067


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Costa Rica", 
              "id": "https://www.grid.ac/institutes/grid.412889.e", 
              "name": [
                "Universidad de Costa Rica, Ciudad universitaria Rodrigo Facio Brenes, San Pedro, Costa Rica"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Antei", 
            "givenName": "Marco", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tata Institute of Fundamental Research", 
              "id": "https://www.grid.ac/institutes/grid.22401.35", 
              "name": [
                "School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400005, Bombay, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Biswas", 
            "givenName": "Indranil", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire Paul Painlev\u00e9", 
              "id": "https://www.grid.ac/institutes/grid.464003.5", 
              "name": [
                "Laboratoire Paul Painlev\u00e9, U.F.R. de Math\u00e9matiques, Universit\u00e9 des Sciences et des Technologies de Lille 1, 59 655, Villeneuve d\u2019Ascq, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emsalem", 
            "givenName": "Michel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Florence", 
              "id": "https://www.grid.ac/institutes/grid.8404.8", 
              "name": [
                "Dipartimento di Matematica e Informatica \u2019Ulisse Dini\u2019, Universit\u00e1 degli Studi di Firenze, Viale Morgagni, 67/a, 50134, Florence, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tonini", 
            "givenName": "Fabio", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Tsing Hua University", 
              "id": "https://www.grid.ac/institutes/grid.38348.34", 
              "name": [
                "Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong", 
                "National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, Hsinchu City, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Lei", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01457128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000033102", 
              "https://doi.org/10.1007/bf01457128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01457128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000033102", 
              "https://doi.org/10.1007/bf01457128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00013-011-0327-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012704080", 
              "https://doi.org/10.1007/s00013-011-0327-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6217-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025372673", 
              "https://doi.org/10.1007/978-1-4612-6217-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-6217-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025372673", 
              "https://doi.org/10.1007/978-1-4612-6217-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2013.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035825753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02967978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052505105", 
              "https://doi.org/10.1007/bf02967978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02967978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052505105", 
              "https://doi.org/10.1007/bf02967978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1474748010000071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054938255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1474748012000011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054938312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9939-09-09997-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059332387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1056-3911-02-00321-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059339500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s1056-3911-2014-00638-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059339809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-06-13211-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064415581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/aif.2667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073138472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s147474801700024x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090363703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/tran/7444", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092717771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511627064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098709916"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-06", 
        "datePublishedReg": "2019-06-01", 
        "description": "We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack X over a field k. This is done by describing the Nori fundamental gerbe of an essentially finite cover of X. A similar result is also obtained for the S-fundamental gerbe.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00029-019-0449-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136551", 
            "issn": [
              "1022-1824", 
              "1420-9020"
            ], 
            "name": "Selecta Mathematica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors", 
        "pagination": "18", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "20bdd7e12c2a187ca02c00dbf3f6846455ec7651b1345256733b54fcc549a469"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00029-019-0449-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112305067"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00029-019-0449-z", 
          "https://app.dimensions.ai/details/publication/pub.1112305067"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00029-019-0449-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0449-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0449-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0449-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0449-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00029-019-0449-z schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6038b9106ccc4bb4a2724f8a9b7d0ea3
    4 schema:citation sg:pub.10.1007/978-1-4612-6217-6
    5 sg:pub.10.1007/bf01457128
    6 sg:pub.10.1007/bf02967978
    7 sg:pub.10.1007/s00013-011-0327-1
    8 https://doi.org/10.1016/j.aim.2013.12.002
    9 https://doi.org/10.1017/cbo9780511627064
    10 https://doi.org/10.1017/s1474748010000071
    11 https://doi.org/10.1017/s1474748012000011
    12 https://doi.org/10.1017/s147474801700024x
    13 https://doi.org/10.1090/s0002-9939-09-09997-3
    14 https://doi.org/10.1090/s1056-3911-02-00321-1
    15 https://doi.org/10.1090/s1056-3911-2014-00638-x
    16 https://doi.org/10.1090/tran/7444
    17 https://doi.org/10.1215/s0012-7094-06-13211-8
    18 https://doi.org/10.5802/aif.2667
    19 schema:datePublished 2019-06
    20 schema:datePublishedReg 2019-06-01
    21 schema:description We prove the existence of a Galois closure for towers of torsors under finite group schemes over a proper, geometrically connected and geometrically reduced algebraic stack X over a field k. This is done by describing the Nori fundamental gerbe of an essentially finite cover of X. A similar result is also obtained for the S-fundamental gerbe.
    22 schema:genre research_article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N8ce8df3b46f843e698228a924f91ed66
    26 Ne1a91eda8bb0463f9bd71ba1512341f8
    27 sg:journal.1136551
    28 schema:name Nori fundamental gerbe of essentially finite covers and Galois closure of towers of torsors
    29 schema:pagination 18
    30 schema:productId N83477da415bb4ca0828a8b5022848cec
    31 N93604e3cd62743288261fe38ea415914
    32 Nb90e1af0e72e490899afd68b8784a7d8
    33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305067
    34 https://doi.org/10.1007/s00029-019-0449-z
    35 schema:sdDatePublished 2019-04-11T09:40
    36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    37 schema:sdPublisher N7c767ab4596f4ad2949321dc105dbe8d
    38 schema:url https://link.springer.com/10.1007%2Fs00029-019-0449-z
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset articles
    41 rdf:type schema:ScholarlyArticle
    42 N1b834a6f00ac4e62a4889d2acc2c178d schema:affiliation https://www.grid.ac/institutes/grid.8404.8
    43 schema:familyName Tonini
    44 schema:givenName Fabio
    45 rdf:type schema:Person
    46 N336977ccb0e843be8030fc4ea94c65bb schema:affiliation https://www.grid.ac/institutes/grid.464003.5
    47 schema:familyName Emsalem
    48 schema:givenName Michel
    49 rdf:type schema:Person
    50 N59f53462a70149ec878225a4c45338d7 rdf:first N336977ccb0e843be8030fc4ea94c65bb
    51 rdf:rest Nc4c86402b8dc4a039dd750d3fac8eec6
    52 N5f752914caf94cefb87a5491c7853bed rdf:first Nd5b28b30854a4f26bec56ecf49c37c83
    53 rdf:rest N59f53462a70149ec878225a4c45338d7
    54 N6038b9106ccc4bb4a2724f8a9b7d0ea3 rdf:first N8bfd11eb2e6c4979bcdc458ab00a1f5e
    55 rdf:rest N5f752914caf94cefb87a5491c7853bed
    56 N7c767ab4596f4ad2949321dc105dbe8d schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N83477da415bb4ca0828a8b5022848cec schema:name readcube_id
    59 schema:value 20bdd7e12c2a187ca02c00dbf3f6846455ec7651b1345256733b54fcc549a469
    60 rdf:type schema:PropertyValue
    61 N888a0126c05a4f47863a1b24ae1fc34c rdf:first Nf8744a7009014797afdb8ba7ff200c74
    62 rdf:rest rdf:nil
    63 N8bfd11eb2e6c4979bcdc458ab00a1f5e schema:affiliation https://www.grid.ac/institutes/grid.412889.e
    64 schema:familyName Antei
    65 schema:givenName Marco
    66 rdf:type schema:Person
    67 N8ce8df3b46f843e698228a924f91ed66 schema:issueNumber 2
    68 rdf:type schema:PublicationIssue
    69 N93604e3cd62743288261fe38ea415914 schema:name doi
    70 schema:value 10.1007/s00029-019-0449-z
    71 rdf:type schema:PropertyValue
    72 Nb90e1af0e72e490899afd68b8784a7d8 schema:name dimensions_id
    73 schema:value pub.1112305067
    74 rdf:type schema:PropertyValue
    75 Nc4c86402b8dc4a039dd750d3fac8eec6 rdf:first N1b834a6f00ac4e62a4889d2acc2c178d
    76 rdf:rest N888a0126c05a4f47863a1b24ae1fc34c
    77 Nd5b28b30854a4f26bec56ecf49c37c83 schema:affiliation https://www.grid.ac/institutes/grid.22401.35
    78 schema:familyName Biswas
    79 schema:givenName Indranil
    80 rdf:type schema:Person
    81 Ne1a91eda8bb0463f9bd71ba1512341f8 schema:volumeNumber 25
    82 rdf:type schema:PublicationVolume
    83 Nf8744a7009014797afdb8ba7ff200c74 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
    84 schema:familyName Zhang
    85 schema:givenName Lei
    86 rdf:type schema:Person
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Pure Mathematics
    92 rdf:type schema:DefinedTerm
    93 sg:journal.1136551 schema:issn 1022-1824
    94 1420-9020
    95 schema:name Selecta Mathematica
    96 rdf:type schema:Periodical
    97 sg:pub.10.1007/978-1-4612-6217-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025372673
    98 https://doi.org/10.1007/978-1-4612-6217-6
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1007/bf01457128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000033102
    101 https://doi.org/10.1007/bf01457128
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1007/bf02967978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052505105
    104 https://doi.org/10.1007/bf02967978
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s00013-011-0327-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012704080
    107 https://doi.org/10.1007/s00013-011-0327-1
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.aim.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035825753
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1017/cbo9780511627064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098709916
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1017/s1474748010000071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054938255
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1017/s1474748012000011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054938312
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1017/s147474801700024x schema:sameAs https://app.dimensions.ai/details/publication/pub.1090363703
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1090/s0002-9939-09-09997-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332387
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1090/s1056-3911-02-00321-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339500
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1090/s1056-3911-2014-00638-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1059339809
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1090/tran/7444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092717771
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1215/s0012-7094-06-13211-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064415581
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.5802/aif.2667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073138472
    130 rdf:type schema:CreativeWork
    131 https://www.grid.ac/institutes/grid.22401.35 schema:alternateName Tata Institute of Fundamental Research
    132 schema:name School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, 400005, Bombay, India
    133 rdf:type schema:Organization
    134 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
    135 schema:name Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
    136 National Tsing Hua University, No. 101, Section 2, Guangfu Road, East District, Hsinchu City, Taiwan
    137 rdf:type schema:Organization
    138 https://www.grid.ac/institutes/grid.412889.e schema:alternateName University of Costa Rica
    139 schema:name Universidad de Costa Rica, Ciudad universitaria Rodrigo Facio Brenes, San Pedro, Costa Rica
    140 rdf:type schema:Organization
    141 https://www.grid.ac/institutes/grid.464003.5 schema:alternateName Laboratoire Paul Painlevé
    142 schema:name Laboratoire Paul Painlevé, U.F.R. de Mathématiques, Université des Sciences et des Technologies de Lille 1, 59 655, Villeneuve d’Ascq, France
    143 rdf:type schema:Organization
    144 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
    145 schema:name Dipartimento di Matematica e Informatica ’Ulisse Dini’, Universitá degli Studi di Firenze, Viale Morgagni, 67/a, 50134, Florence, Italy
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...