Genus two generalization of A1 spherical DAHA View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-06

AUTHORS

S. Arthamonov, Sh. Shakirov

ABSTRACT

We consider a system of three commuting difference operators in three variables x12,x13,x23 with two generic complex parameters q, t. This system and its eigenfunctions generalize the trigonometric A1 Ruijsenaars-Schneider model and A1 Macdonald polynomials, respectively. The principal object of study in this paper is the algebra generated by these difference operators together with operators of multiplication by xij+xij-1. We represent the Dehn twists by automorphisms of this algebra and prove that these automorphisms satisfy all relations of the mapping class group of the closed genus two surface. Therefore we argue from topological perspective this algebra is a genus two generalization of A1 spherical DAHA. More... »

PAGES

17

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00029-019-0447-1

DOI

http://dx.doi.org/10.1007/s00029-019-0447-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112305066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Department of Mathematics, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA", 
            "ITEP, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arthamonov", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Information Transmission Problems", 
          "id": "https://www.grid.ac/institutes/grid.435025.5", 
          "name": [
            "Harvard Society of Fellows, Harvard University, Cambridge, MA, USA", 
            "Institute for Information Transmission Problems, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shakirov", 
        "givenName": "Sh.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(89)90436-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003878513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02774014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005462789", 
          "https://doi.org/10.1007/bf02774014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2012.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006554100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011962713", 
          "https://doi.org/10.1007/bf01389091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024458739", 
          "https://doi.org/10.1007/bf02096491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02096491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024458739", 
          "https://doi.org/10.1007/bf02096491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-014-2197-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030362673", 
          "https://doi.org/10.1007/s00220-014-2197-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10586458.2006.10128956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031692500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01217730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033035951", 
          "https://doi.org/10.1007/bf01217730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01217730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033035951", 
          "https://doi.org/10.1007/bf01217730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01239527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053649616", 
          "https://doi.org/10.1007/bf01239527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/agt.2016.16.843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069058676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2118632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069769108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/mrl.1994.v1.n3.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072461603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomphys.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091272639"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-06", 
    "datePublishedReg": "2019-06-01", 
    "description": "We consider a system of three commuting difference operators in three variables x12,x13,x23 with two generic complex parameters q, t. This system and its eigenfunctions generalize the trigonometric A1 Ruijsenaars-Schneider model and A1 Macdonald polynomials, respectively. The principal object of study in this paper is the algebra generated by these difference operators together with operators of multiplication by xij+xij-1. We represent the Dehn twists by automorphisms of this algebra and prove that these automorphisms satisfy all relations of the mapping class group of the closed genus two surface. Therefore we argue from topological perspective this algebra is a genus two generalization of A1 spherical DAHA.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00029-019-0447-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136551", 
        "issn": [
          "1022-1824", 
          "1420-9020"
        ], 
        "name": "Selecta Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Genus two generalization of A1 spherical DAHA", 
    "pagination": "17", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "030885c20a2b1b773351c17dfdc5db2f6ae90c655793f836dc68d50c351ec542"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00029-019-0447-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112305066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00029-019-0447-1", 
      "https://app.dimensions.ai/details/publication/pub.1112305066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99841_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00029-019-0447-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0447-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0447-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0447-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-019-0447-1'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00029-019-0447-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndb66498f9836452d93b5ca8b796da4c1
4 schema:citation sg:pub.10.1007/bf01217730
5 sg:pub.10.1007/bf01239527
6 sg:pub.10.1007/bf01389091
7 sg:pub.10.1007/bf02096491
8 sg:pub.10.1007/bf02774014
9 sg:pub.10.1007/s00220-014-2197-4
10 https://doi.org/10.1016/0550-3213(89)90436-7
11 https://doi.org/10.1016/j.geomphys.2017.08.006
12 https://doi.org/10.1016/j.nuclphysb.2012.10.005
13 https://doi.org/10.1080/10586458.2006.10128956
14 https://doi.org/10.2140/agt.2016.16.843
15 https://doi.org/10.2307/2118632
16 https://doi.org/10.4310/mrl.1994.v1.n3.a1
17 schema:datePublished 2019-06
18 schema:datePublishedReg 2019-06-01
19 schema:description We consider a system of three commuting difference operators in three variables x12,x13,x23 with two generic complex parameters q, t. This system and its eigenfunctions generalize the trigonometric A1 Ruijsenaars-Schneider model and A1 Macdonald polynomials, respectively. The principal object of study in this paper is the algebra generated by these difference operators together with operators of multiplication by xij+xij-1. We represent the Dehn twists by automorphisms of this algebra and prove that these automorphisms satisfy all relations of the mapping class group of the closed genus two surface. Therefore we argue from topological perspective this algebra is a genus two generalization of A1 spherical DAHA.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf Nb6f893e81ca04218a6a9527b3e3d4eba
24 Nc70e3413cdd9457fbba3886b375b2e89
25 sg:journal.1136551
26 schema:name Genus two generalization of A1 spherical DAHA
27 schema:pagination 17
28 schema:productId N7b0afad09a194fa2a6079208000056cc
29 Na017079f93184ad8a0ee2a539aec7f34
30 Nb18c7b16ccd14e54902eb96930e56d75
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305066
32 https://doi.org/10.1007/s00029-019-0447-1
33 schema:sdDatePublished 2019-04-11T09:41
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher N2bce04d95aa8442881fb64f0691d45b3
36 schema:url https://link.springer.com/10.1007%2Fs00029-019-0447-1
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N2bce04d95aa8442881fb64f0691d45b3 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N2eff43e3dad84dc8ba1c9e932ff69bff rdf:first Ne4881666cc8e4bbd80d794f69eab65e1
43 rdf:rest rdf:nil
44 N524f4ec503a54440ad5625faf75ae436 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
45 schema:familyName Arthamonov
46 schema:givenName S.
47 rdf:type schema:Person
48 N7b0afad09a194fa2a6079208000056cc schema:name dimensions_id
49 schema:value pub.1112305066
50 rdf:type schema:PropertyValue
51 Na017079f93184ad8a0ee2a539aec7f34 schema:name doi
52 schema:value 10.1007/s00029-019-0447-1
53 rdf:type schema:PropertyValue
54 Nb18c7b16ccd14e54902eb96930e56d75 schema:name readcube_id
55 schema:value 030885c20a2b1b773351c17dfdc5db2f6ae90c655793f836dc68d50c351ec542
56 rdf:type schema:PropertyValue
57 Nb6f893e81ca04218a6a9527b3e3d4eba schema:issueNumber 2
58 rdf:type schema:PublicationIssue
59 Nc70e3413cdd9457fbba3886b375b2e89 schema:volumeNumber 25
60 rdf:type schema:PublicationVolume
61 Ndb66498f9836452d93b5ca8b796da4c1 rdf:first N524f4ec503a54440ad5625faf75ae436
62 rdf:rest N2eff43e3dad84dc8ba1c9e932ff69bff
63 Ne4881666cc8e4bbd80d794f69eab65e1 schema:affiliation https://www.grid.ac/institutes/grid.435025.5
64 schema:familyName Shakirov
65 schema:givenName Sh.
66 rdf:type schema:Person
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136551 schema:issn 1022-1824
74 1420-9020
75 schema:name Selecta Mathematica
76 rdf:type schema:Periodical
77 sg:pub.10.1007/bf01217730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033035951
78 https://doi.org/10.1007/bf01217730
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01239527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053649616
81 https://doi.org/10.1007/bf01239527
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01389091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011962713
84 https://doi.org/10.1007/bf01389091
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02096491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024458739
87 https://doi.org/10.1007/bf02096491
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/bf02774014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005462789
90 https://doi.org/10.1007/bf02774014
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00220-014-2197-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030362673
93 https://doi.org/10.1007/s00220-014-2197-4
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0550-3213(89)90436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003878513
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.geomphys.2017.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091272639
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.nuclphysb.2012.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006554100
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1080/10586458.2006.10128956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031692500
102 rdf:type schema:CreativeWork
103 https://doi.org/10.2140/agt.2016.16.843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069058676
104 rdf:type schema:CreativeWork
105 https://doi.org/10.2307/2118632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069769108
106 rdf:type schema:CreativeWork
107 https://doi.org/10.4310/mrl.1994.v1.n3.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072461603
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
110 schema:name Department of Mathematics, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
111 ITEP, Moscow, Russia
112 rdf:type schema:Organization
113 https://www.grid.ac/institutes/grid.435025.5 schema:alternateName Institute for Information Transmission Problems
114 schema:name Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
115 Institute for Information Transmission Problems, Moscow, Russia
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...