Quasiconformal non-parametrizability of almost smooth spheres View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Pekka Pankka, Vyron Vellis

ABSTRACT

We show that, for each n≥3, there exists a smooth Riemannian metric g on a punctured sphere Sn\{x0} for which the associated length metric extends to a length metric d of Sn with the following properties: the metric sphere (Sn,d) is Ahlfors n-regular and linearly locally contractible but there is no quasiconformal homeomorphism between (Sn,d) and the standard Euclidean sphere Sn. More... »

PAGES

1121-1151

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4

DOI

http://dx.doi.org/10.1007/s00029-016-0292-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024908553


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Helsinki", 
          "id": "https://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P. O. Box 35 (MaD), 40014, Jyv\u00e4skyl\u00e4, Finland", 
            "Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, 00014, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pankka", 
        "givenName": "Pekka", 
        "id": "sg:person.01252167767.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Connecticut", 
          "id": "https://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P. O. Box 35 (MaD), 40014, Jyv\u00e4skyl\u00e4, Finland", 
            "Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, 06269, Storrs, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vellis", 
        "givenName": "Vyron", 
        "id": "sg:person.014605445471.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605445471.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01587936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005663224", 
          "https://doi.org/10.1007/bf01587936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/pdn023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006066877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-0131-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017376824", 
          "https://doi.org/10.1007/978-1-4613-0131-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599583", 
          "https://doi.org/10.1007/bf02392747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-016-0686-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042900953", 
          "https://doi.org/10.1007/s00222-016-0686-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-016-0686-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042900953", 
          "https://doi.org/10.1007/s00222-016-0686-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-002-0233-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044318110", 
          "https://doi.org/10.1007/s00222-002-0233-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-09-04861-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059334962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/gt.2010.14.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069060344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969543", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069674918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072321141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5186/aasfm.1980.0531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072648253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214440725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/fm-86-1-9-27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091815115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "We show that, for each n\u22653, there exists a smooth Riemannian metric g on a punctured sphere Sn\\{x0} for which the associated length metric extends to a length metric d of Sn with the following properties: the metric sphere (Sn,d) is Ahlfors n-regular and linearly locally contractible but there is no quasiconformal homeomorphism between (Sn,d) and the standard Euclidean sphere Sn.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00029-016-0292-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136551", 
        "issn": [
          "1022-1824", 
          "1420-9020"
        ], 
        "name": "Selecta Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "name": "Quasiconformal non-parametrizability of almost smooth spheres", 
    "pagination": "1121-1151", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76aa48910ee6d08ad0ae48c5f19f24394a766ae62fc5dbc9f0f3202ef95e3236"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00029-016-0292-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024908553"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00029-016-0292-4", 
      "https://app.dimensions.ai/details/publication/pub.1024908553"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00029-016-0292-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00029-016-0292-4 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N03cffa3ed9484ea9b42bdd2012f35a41
4 schema:citation sg:pub.10.1007/978-1-4613-0131-8
5 sg:pub.10.1007/bf01587936
6 sg:pub.10.1007/bf02392747
7 sg:pub.10.1007/s00222-002-0233-z
8 sg:pub.10.1007/s00222-016-0686-0
9 https://doi.org/10.1090/s0002-9947-09-04861-2
10 https://doi.org/10.1112/plms/pdn023
11 https://doi.org/10.2140/gt.2010.14.773
12 https://doi.org/10.2307/1969543
13 https://doi.org/10.2307/1969804
14 https://doi.org/10.4064/fm-86-1-9-27
15 https://doi.org/10.4171/rmi/198
16 https://doi.org/10.4171/rmi/802
17 https://doi.org/10.4310/jdg/1214440725
18 https://doi.org/10.5186/aasfm.1980.0531
19 schema:datePublished 2017-04
20 schema:datePublishedReg 2017-04-01
21 schema:description We show that, for each n≥3, there exists a smooth Riemannian metric g on a punctured sphere Sn\{x0} for which the associated length metric extends to a length metric d of Sn with the following properties: the metric sphere (Sn,d) is Ahlfors n-regular and linearly locally contractible but there is no quasiconformal homeomorphism between (Sn,d) and the standard Euclidean sphere Sn.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N599147bf72f24f2980e1272db9e98d99
26 Nf242f8c29e2445d3b864f2fa0ee3addd
27 sg:journal.1136551
28 schema:name Quasiconformal non-parametrizability of almost smooth spheres
29 schema:pagination 1121-1151
30 schema:productId N55d9b73d88fe4936a374b35848815ace
31 Na1ee8ab0bfaf4c72a2f73065820b2951
32 Nad9383da42094272b77c12cc77d514de
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024908553
34 https://doi.org/10.1007/s00029-016-0292-4
35 schema:sdDatePublished 2019-04-11T12:26
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nb84a8841945f4b11bfdcc50bb285d6dc
38 schema:url https://link.springer.com/10.1007%2Fs00029-016-0292-4
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N03cffa3ed9484ea9b42bdd2012f35a41 rdf:first sg:person.01252167767.43
43 rdf:rest Nfd29c5e6d869471aa68f8b0e779ec137
44 N55d9b73d88fe4936a374b35848815ace schema:name doi
45 schema:value 10.1007/s00029-016-0292-4
46 rdf:type schema:PropertyValue
47 N599147bf72f24f2980e1272db9e98d99 schema:issueNumber 2
48 rdf:type schema:PublicationIssue
49 Na1ee8ab0bfaf4c72a2f73065820b2951 schema:name readcube_id
50 schema:value 76aa48910ee6d08ad0ae48c5f19f24394a766ae62fc5dbc9f0f3202ef95e3236
51 rdf:type schema:PropertyValue
52 Nad9383da42094272b77c12cc77d514de schema:name dimensions_id
53 schema:value pub.1024908553
54 rdf:type schema:PropertyValue
55 Nb84a8841945f4b11bfdcc50bb285d6dc schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nf242f8c29e2445d3b864f2fa0ee3addd schema:volumeNumber 23
58 rdf:type schema:PublicationVolume
59 Nfd29c5e6d869471aa68f8b0e779ec137 rdf:first sg:person.014605445471.04
60 rdf:rest rdf:nil
61 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
62 schema:name Medical and Health Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
65 schema:name Public Health and Health Services
66 rdf:type schema:DefinedTerm
67 sg:journal.1136551 schema:issn 1022-1824
68 1420-9020
69 schema:name Selecta Mathematica
70 rdf:type schema:Periodical
71 sg:person.01252167767.43 schema:affiliation https://www.grid.ac/institutes/grid.7737.4
72 schema:familyName Pankka
73 schema:givenName Pekka
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43
75 rdf:type schema:Person
76 sg:person.014605445471.04 schema:affiliation https://www.grid.ac/institutes/grid.63054.34
77 schema:familyName Vellis
78 schema:givenName Vyron
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605445471.04
80 rdf:type schema:Person
81 sg:pub.10.1007/978-1-4613-0131-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017376824
82 https://doi.org/10.1007/978-1-4613-0131-8
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01587936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005663224
85 https://doi.org/10.1007/bf01587936
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf02392747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599583
88 https://doi.org/10.1007/bf02392747
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00222-002-0233-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044318110
91 https://doi.org/10.1007/s00222-002-0233-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00222-016-0686-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042900953
94 https://doi.org/10.1007/s00222-016-0686-0
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1090/s0002-9947-09-04861-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059334962
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1112/plms/pdn023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006066877
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2140/gt.2010.14.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060344
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1969543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674918
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1969804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675167
105 rdf:type schema:CreativeWork
106 https://doi.org/10.4064/fm-86-1-9-27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091815115
107 rdf:type schema:CreativeWork
108 https://doi.org/10.4171/rmi/198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320477
109 rdf:type schema:CreativeWork
110 https://doi.org/10.4171/rmi/802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072321141
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4310/jdg/1214440725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459582
113 rdf:type schema:CreativeWork
114 https://doi.org/10.5186/aasfm.1980.0531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648253
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.63054.34 schema:alternateName University of Connecticut
117 schema:name Department of Mathematics and Statistics, University of Jyväskylä, P. O. Box 35 (MaD), 40014, Jyväskylä, Finland
118 Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, 06269, Storrs, CT, USA
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.7737.4 schema:alternateName University of Helsinki
121 schema:name Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, 00014, Helsinki, Finland
122 Department of Mathematics and Statistics, University of Jyväskylä, P. O. Box 35 (MaD), 40014, Jyväskylä, Finland
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...