Ontology type: schema:ScholarlyArticle Open Access: True
2017-04
AUTHORS ABSTRACTWe show that, for each n≥3, there exists a smooth Riemannian metric g on a punctured sphere Sn\{x0} for which the associated length metric extends to a length metric d of Sn with the following properties: the metric sphere (Sn,d) is Ahlfors n-regular and linearly locally contractible but there is no quasiconformal homeomorphism between (Sn,d) and the standard Euclidean sphere Sn. More... »
PAGES1121-1151
http://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4
DOIhttp://dx.doi.org/10.1007/s00029-016-0292-4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024908553
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Public Health and Health Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Helsinki",
"id": "https://www.grid.ac/institutes/grid.7737.4",
"name": [
"Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P. O. Box 35 (MaD), 40014, Jyv\u00e4skyl\u00e4, Finland",
"Department of Mathematics and Statistics, University of Helsinki, P. O. Box 68, 00014, Helsinki, Finland"
],
"type": "Organization"
},
"familyName": "Pankka",
"givenName": "Pekka",
"id": "sg:person.01252167767.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252167767.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Connecticut",
"id": "https://www.grid.ac/institutes/grid.63054.34",
"name": [
"Department of Mathematics and Statistics, University of Jyv\u00e4skyl\u00e4, P. O. Box 35 (MaD), 40014, Jyv\u00e4skyl\u00e4, Finland",
"Department of Mathematics, University of Connecticut, 341 Mansfield Road U1009, 06269, Storrs, CT, USA"
],
"type": "Organization"
},
"familyName": "Vellis",
"givenName": "Vyron",
"id": "sg:person.014605445471.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014605445471.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01587936",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005663224",
"https://doi.org/10.1007/bf01587936"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/plms/pdn023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006066877"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-0131-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017376824",
"https://doi.org/10.1007/978-1-4613-0131-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-0131-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017376824",
"https://doi.org/10.1007/978-1-4613-0131-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02392747",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038599583",
"https://doi.org/10.1007/bf02392747"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-016-0686-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042900953",
"https://doi.org/10.1007/s00222-016-0686-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-016-0686-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042900953",
"https://doi.org/10.1007/s00222-016-0686-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-002-0233-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044318110",
"https://doi.org/10.1007/s00222-002-0233-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-09-04861-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059334962"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/gt.2010.14.773",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069060344"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969543",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069674918"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069675167"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/198",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072320477"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4171/rmi/802",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072321141"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5186/aasfm.1980.0531",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072648253"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4310/jdg/1214440725",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084459582"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/fm-86-1-9-27",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091815115"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-04",
"datePublishedReg": "2017-04-01",
"description": "We show that, for each n\u22653, there exists a smooth Riemannian metric g on a punctured sphere Sn\\{x0} for which the associated length metric extends to a length metric d of Sn with the following properties: the metric sphere (Sn,d) is Ahlfors n-regular and linearly locally contractible but there is no quasiconformal homeomorphism between (Sn,d) and the standard Euclidean sphere Sn.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00029-016-0292-4",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136551",
"issn": [
"1022-1824",
"1420-9020"
],
"name": "Selecta Mathematica",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"name": "Quasiconformal non-parametrizability of almost smooth spheres",
"pagination": "1121-1151",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"76aa48910ee6d08ad0ae48c5f19f24394a766ae62fc5dbc9f0f3202ef95e3236"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00029-016-0292-4"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024908553"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00029-016-0292-4",
"https://app.dimensions.ai/details/publication/pub.1024908553"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00029-016-0292-4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-016-0292-4'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
21 PREDICATES
42 URIs
19 LITERALS
7 BLANK NODES