Cycle classes on the moduli of K3 surfaces in positive characteristic View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-29

AUTHORS

Torsten Ekedahl, Gerard van der Geer

ABSTRACT

This paper provides explicit closed formulas in terms of tautological classes for the cycle classes of the height and Artin invariant strata in families of K3 surfaces. The proof is uniform for all strata and uses a flag space as the computations in Ekedahl and van der Geer (Algebra, arithmetic and geometry, progress in mathematics, vol. 269–270, Birkhäuser, Basel, 2010) for the Ekedahl–Oort strata for families of abelian varieties, but employs a Pieri formula to determine the push down to the base space. More... »

PAGES

245-291

References to SciGraph publications

  • 2012-12-29. The Tate conjecture for K3 surfaces over finite fields in INVENTIONES MATHEMATICAE
  • 1989. Enriques Surfaces I in NONE
  • 2001. Formal Brauer Groups and Moduli of Abelian Surfaces in MODULI OF ABELIAN VARIETIES
  • 2009. Cycle Classes of the E-O Stratification on the Moduli of Abelian Varieties in ALGEBRA, ARITHMETIC, AND GEOMETRY
  • 1999. Cycles on the Moduli Space of Abelian Varieties in MODULI OF CURVES AND ABELIAN VARIETIES
  • 1973-09. The Shafarevich-Tate conjecture for pencils of elliptic curves onK3 surfaces in INVENTIONES MATHEMATICAE
  • 2000-08. On a stratification of the moduli of K3 surfaces in JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY
  • 2000. Singular Loci of Schubert Varieties in NONE
  • 1981. Relèvement des Surfaces K3 en Caractéristique Nulle in SURFACES ALGÉBRIQUES
  • 1983. A Crystalline Torelli Theorem for Supersingular K3 Surfaces in ARITHMETIC AND GEOMETRY
  • 1998. Schubert Varieties and Degeneracy Loci in NONE
  • 1982. Hodge Cycles and Crystalline Cohomology in HODGE CYCLES, MOTIVES, AND SHIMURA VARIETIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00029-014-0156-8

    DOI

    http://dx.doi.org/10.1007/s00029-014-0156-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014569379


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.10548.38", 
              "name": [
                "Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ekedahl", 
            "givenName": "Torsten", 
            "id": "sg:person.015673246600.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.7177.6", 
              "name": [
                "Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van der Geer", 
            "givenName": "Gerard", 
            "id": "sg:person.011551332252.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0096380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050454435", 
              "https://doi.org/10.1007/bfb0096380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-3696-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012714709", 
              "https://doi.org/10.1007/978-1-4612-3696-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-1324-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049385289", 
              "https://doi.org/10.1007/978-1-4612-1324-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-322-90172-9_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027816555", 
              "https://doi.org/10.1007/978-3-322-90172-9_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-8176-4745-2_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049310473", 
              "https://doi.org/10.1007/978-0-8176-4745-2_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0090646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010292004", 
              "https://doi.org/10.1007/bfb0090646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-38955-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019394004", 
              "https://doi.org/10.1007/978-3-540-38955-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-012-0443-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042447474", 
              "https://doi.org/10.1007/s00222-012-0443-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100970000021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054521355", 
              "https://doi.org/10.1007/s100970000021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01394097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032012190", 
              "https://doi.org/10.1007/bf01394097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-9286-7_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045483305", 
              "https://doi.org/10.1007/978-1-4757-9286-7_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8303-0_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012498874", 
              "https://doi.org/10.1007/978-3-0348-8303-0_6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05-29", 
        "datePublishedReg": "2014-05-29", 
        "description": "This paper provides explicit closed formulas in terms of tautological classes for the cycle classes of the height and Artin invariant strata in families of K3 surfaces. The proof is uniform for all strata and uses a flag space as the computations in Ekedahl and van der Geer (Algebra, arithmetic and geometry, progress in mathematics, vol. 269\u2013270, Birkh\u00e4user, Basel,\u00a02010) for the Ekedahl\u2013Oort strata for families of abelian varieties, but employs a Pieri formula to determine the push down to the base space.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00029-014-0156-8", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136551", 
            "issn": [
              "1022-1824", 
              "1420-9020"
            ], 
            "name": "Selecta Mathematica", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "keywords": [
          "K3 surfaces", 
          "cycle classes", 
          "explicit closed formula", 
          "tautological classes", 
          "base space", 
          "Pieri formula", 
          "flag space", 
          "abelian varieties", 
          "closed formula", 
          "Ekedahl\u2013Oort strata", 
          "positive characteristic", 
          "class", 
          "space", 
          "formula", 
          "computation", 
          "proof", 
          "Ekedahl", 
          "terms", 
          "family", 
          "variety", 
          "characteristics", 
          "modulus", 
          "strata", 
          "surface", 
          "Geer", 
          "push", 
          "height", 
          "paper", 
          "van der Geer", 
          "Artin invariant strata", 
          "invariant strata", 
          "der Geer"
        ], 
        "name": "Cycle classes on the moduli of K3 surfaces in positive characteristic", 
        "pagination": "245-291", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014569379"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00029-014-0156-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00029-014-0156-8", 
          "https://app.dimensions.ai/details/publication/pub.1014569379"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_641.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00029-014-0156-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-014-0156-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-014-0156-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-014-0156-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-014-0156-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      22 PREDICATES      69 URIs      49 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00029-014-0156-8 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8fed85eb770a433d8ad3bb45f9a470da
    4 schema:citation sg:pub.10.1007/978-0-8176-4745-2_13
    5 sg:pub.10.1007/978-1-4612-1324-6
    6 sg:pub.10.1007/978-1-4612-3696-2
    7 sg:pub.10.1007/978-1-4757-9286-7_14
    8 sg:pub.10.1007/978-3-0348-8303-0_6
    9 sg:pub.10.1007/978-3-322-90172-9_4
    10 sg:pub.10.1007/978-3-540-38955-2_8
    11 sg:pub.10.1007/bf01394097
    12 sg:pub.10.1007/bfb0090646
    13 sg:pub.10.1007/bfb0096380
    14 sg:pub.10.1007/s00222-012-0443-y
    15 sg:pub.10.1007/s100970000021
    16 schema:datePublished 2014-05-29
    17 schema:datePublishedReg 2014-05-29
    18 schema:description This paper provides explicit closed formulas in terms of tautological classes for the cycle classes of the height and Artin invariant strata in families of K3 surfaces. The proof is uniform for all strata and uses a flag space as the computations in Ekedahl and van der Geer (Algebra, arithmetic and geometry, progress in mathematics, vol. 269–270, Birkhäuser, Basel, 2010) for the Ekedahl–Oort strata for families of abelian varieties, but employs a Pieri formula to determine the push down to the base space.
    19 schema:genre article
    20 schema:inLanguage en
    21 schema:isAccessibleForFree true
    22 schema:isPartOf N2eeb88aba4d1491999739323ea09cdf2
    23 Nc257993aa0614cb2a3b82a946d60ee59
    24 sg:journal.1136551
    25 schema:keywords Artin invariant strata
    26 Ekedahl
    27 Ekedahl–Oort strata
    28 Geer
    29 K3 surfaces
    30 Pieri formula
    31 abelian varieties
    32 base space
    33 characteristics
    34 class
    35 closed formula
    36 computation
    37 cycle classes
    38 der Geer
    39 explicit closed formula
    40 family
    41 flag space
    42 formula
    43 height
    44 invariant strata
    45 modulus
    46 paper
    47 positive characteristic
    48 proof
    49 push
    50 space
    51 strata
    52 surface
    53 tautological classes
    54 terms
    55 van der Geer
    56 variety
    57 schema:name Cycle classes on the moduli of K3 surfaces in positive characteristic
    58 schema:pagination 245-291
    59 schema:productId N44350393c13d46bda842e41ff0b133bb
    60 N5d18688ea1a7419886068976a60a5208
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014569379
    62 https://doi.org/10.1007/s00029-014-0156-8
    63 schema:sdDatePublished 2021-12-01T19:31
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher N71605cd151a940fbb2c36fcb94dffe64
    66 schema:url https://doi.org/10.1007/s00029-014-0156-8
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N2eeb88aba4d1491999739323ea09cdf2 schema:issueNumber 1
    71 rdf:type schema:PublicationIssue
    72 N44350393c13d46bda842e41ff0b133bb schema:name doi
    73 schema:value 10.1007/s00029-014-0156-8
    74 rdf:type schema:PropertyValue
    75 N5d18688ea1a7419886068976a60a5208 schema:name dimensions_id
    76 schema:value pub.1014569379
    77 rdf:type schema:PropertyValue
    78 N71605cd151a940fbb2c36fcb94dffe64 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N8fed85eb770a433d8ad3bb45f9a470da rdf:first sg:person.015673246600.14
    81 rdf:rest Nc53909f1419d49e2bedc8a9ff15492bc
    82 Nc257993aa0614cb2a3b82a946d60ee59 schema:volumeNumber 21
    83 rdf:type schema:PublicationVolume
    84 Nc53909f1419d49e2bedc8a9ff15492bc rdf:first sg:person.011551332252.27
    85 rdf:rest rdf:nil
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Pure Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1136551 schema:issn 1022-1824
    93 1420-9020
    94 schema:name Selecta Mathematica
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.011551332252.27 schema:affiliation grid-institutes:grid.7177.6
    98 schema:familyName van der Geer
    99 schema:givenName Gerard
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
    101 rdf:type schema:Person
    102 sg:person.015673246600.14 schema:affiliation grid-institutes:grid.10548.38
    103 schema:familyName Ekedahl
    104 schema:givenName Torsten
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015673246600.14
    106 rdf:type schema:Person
    107 sg:pub.10.1007/978-0-8176-4745-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049310473
    108 https://doi.org/10.1007/978-0-8176-4745-2_13
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-1-4612-1324-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049385289
    111 https://doi.org/10.1007/978-1-4612-1324-6
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-1-4612-3696-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012714709
    114 https://doi.org/10.1007/978-1-4612-3696-2
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/978-1-4757-9286-7_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045483305
    117 https://doi.org/10.1007/978-1-4757-9286-7_14
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/978-3-0348-8303-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012498874
    120 https://doi.org/10.1007/978-3-0348-8303-0_6
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/978-3-322-90172-9_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027816555
    123 https://doi.org/10.1007/978-3-322-90172-9_4
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/978-3-540-38955-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019394004
    126 https://doi.org/10.1007/978-3-540-38955-2_8
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01394097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032012190
    129 https://doi.org/10.1007/bf01394097
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bfb0090646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010292004
    132 https://doi.org/10.1007/bfb0090646
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bfb0096380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050454435
    135 https://doi.org/10.1007/bfb0096380
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00222-012-0443-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1042447474
    138 https://doi.org/10.1007/s00222-012-0443-y
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s100970000021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054521355
    141 https://doi.org/10.1007/s100970000021
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.10548.38 schema:alternateName Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden
    144 schema:name Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden
    145 rdf:type schema:Organization
    146 grid-institutes:grid.7177.6 schema:alternateName Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    147 schema:name Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE, Amsterdam, The Netherlands
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...