Quivers with potentials and their representations I: Mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-10

AUTHORS

Harm Derksen, Jerzy Weyman, Andrei Zelevinsky

ABSTRACT

We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein–Gelfand–Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi–Yau algebras, cluster algebras. More... »

PAGES

59-119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9

DOI

http://dx.doi.org/10.1007/s00029-008-0057-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032322547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derksen", 
        "givenName": "Harm", 
        "id": "sg:person.011256177562.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256177562.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weyman", 
        "givenName": "Jerzy", 
        "id": "sg:person.010102231546.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102231546.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zelevinsky", 
        "givenName": "Andrei", 
        "id": "sg:person.0605540630.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605540630.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein\u2013Gelfand\u2013Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi\u2013Yau algebras, cluster algebras.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00029-008-0057-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136551", 
        "issn": [
          "1022-1824", 
          "1420-9020"
        ], 
        "name": "Selecta Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quivers with potentials and their representations I: Mutations", 
    "pagination": "59-119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99fa51ce79e3b88708bf90f095d7bbcecc9bcb07b703abb44380ee226b8c52eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00029-008-0057-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032322547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00029-008-0057-9", 
      "https://app.dimensions.ai/details/publication/pub.1032322547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00029-008-0057-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00029-008-0057-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne3deafe1ff4f43d4bcd778d3746f3aa5
4 schema:datePublished 2008-10
5 schema:datePublishedReg 2008-10-01
6 schema:description We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein–Gelfand–Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi–Yau algebras, cluster algebras.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N2326052561ce4a6686997684743fbd5f
11 Nad81d1f2bc7d484bae90f057db90208e
12 sg:journal.1136551
13 schema:name Quivers with potentials and their representations I: Mutations
14 schema:pagination 59-119
15 schema:productId N109edc8eb7ef452d96b9abeec18e4963
16 N382714152ba44dc49a29c0ba0e712847
17 Na9a2dd2f838c42e9829314001b089962
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032322547
19 https://doi.org/10.1007/s00029-008-0057-9
20 schema:sdDatePublished 2019-04-10T22:28
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N8528480562cc439c91c4098a21532283
23 schema:url http://link.springer.com/10.1007/s00029-008-0057-9
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N109edc8eb7ef452d96b9abeec18e4963 schema:name doi
28 schema:value 10.1007/s00029-008-0057-9
29 rdf:type schema:PropertyValue
30 N2326052561ce4a6686997684743fbd5f schema:volumeNumber 14
31 rdf:type schema:PublicationVolume
32 N382714152ba44dc49a29c0ba0e712847 schema:name readcube_id
33 schema:value 99fa51ce79e3b88708bf90f095d7bbcecc9bcb07b703abb44380ee226b8c52eb
34 rdf:type schema:PropertyValue
35 N7bb87765059f48ee8f635727a853de02 rdf:first sg:person.0605540630.10
36 rdf:rest rdf:nil
37 N8528480562cc439c91c4098a21532283 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Na9a2dd2f838c42e9829314001b089962 schema:name dimensions_id
40 schema:value pub.1032322547
41 rdf:type schema:PropertyValue
42 Nad81d1f2bc7d484bae90f057db90208e schema:issueNumber 1
43 rdf:type schema:PublicationIssue
44 Ne3deafe1ff4f43d4bcd778d3746f3aa5 rdf:first sg:person.011256177562.53
45 rdf:rest Nf28ee9d3a70a4272b87c6ee0c3898733
46 Nf28ee9d3a70a4272b87c6ee0c3898733 rdf:first sg:person.010102231546.41
47 rdf:rest N7bb87765059f48ee8f635727a853de02
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136551 schema:issn 1022-1824
55 1420-9020
56 schema:name Selecta Mathematica
57 rdf:type schema:Periodical
58 sg:person.010102231546.41 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
59 schema:familyName Weyman
60 schema:givenName Jerzy
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102231546.41
62 rdf:type schema:Person
63 sg:person.011256177562.53 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
64 schema:familyName Derksen
65 schema:givenName Harm
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256177562.53
67 rdf:type schema:Person
68 sg:person.0605540630.10 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
69 schema:familyName Zelevinsky
70 schema:givenName Andrei
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605540630.10
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
74 schema:name Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI, USA
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
77 schema:name Department of Mathematics, Northeastern University, 02115, Boston, MA, USA
78 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...