Quivers with potentials and their representations I: Mutations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-10

AUTHORS

Harm Derksen, Jerzy Weyman, Andrei Zelevinsky

ABSTRACT

We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein–Gelfand–Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi–Yau algebras, cluster algebras. More... »

PAGES

59-119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9

DOI

http://dx.doi.org/10.1007/s00029-008-0057-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032322547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derksen", 
        "givenName": "Harm", 
        "id": "sg:person.011256177562.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256177562.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weyman", 
        "givenName": "Jerzy", 
        "id": "sg:person.010102231546.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102231546.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Department of Mathematics, Northeastern University, 02115, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zelevinsky", 
        "givenName": "Andrei", 
        "id": "sg:person.0605540630.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605540630.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-10", 
    "datePublishedReg": "2008-10-01", 
    "description": "We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein\u2013Gelfand\u2013Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi\u2013Yau algebras, cluster algebras.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00029-008-0057-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136551", 
        "issn": [
          "1022-1824", 
          "1420-9020"
        ], 
        "name": "Selecta Mathematica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Quivers with potentials and their representations I: Mutations", 
    "pagination": "59-119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99fa51ce79e3b88708bf90f095d7bbcecc9bcb07b703abb44380ee226b8c52eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00029-008-0057-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032322547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00029-008-0057-9", 
      "https://app.dimensions.ai/details/publication/pub.1032322547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00029-008-0057-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00029-008-0057-9'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00029-008-0057-9 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2ac906dc08ae464bae4dab6ade332bbd
4 schema:datePublished 2008-10
5 schema:datePublishedReg 2008-10-01
6 schema:description We study quivers with relations given by noncommutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein–Gelfand–Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi–Yau algebras, cluster algebras.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N566d888820104bd4805fa94b410ba62d
11 Ne5a4981353bc46ccbe15e8978b767f51
12 sg:journal.1136551
13 schema:name Quivers with potentials and their representations I: Mutations
14 schema:pagination 59-119
15 schema:productId N0547579976d641719a659171144dc0d1
16 N902e7766fd2d43a28466c70c8a319401
17 Nd0c701ecb38a4378bfaf15250c17c38b
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032322547
19 https://doi.org/10.1007/s00029-008-0057-9
20 schema:sdDatePublished 2019-04-10T22:28
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na22ad3f87a1b473f9a5ed6e998146268
23 schema:url http://link.springer.com/10.1007/s00029-008-0057-9
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0547579976d641719a659171144dc0d1 schema:name readcube_id
28 schema:value 99fa51ce79e3b88708bf90f095d7bbcecc9bcb07b703abb44380ee226b8c52eb
29 rdf:type schema:PropertyValue
30 N2ac906dc08ae464bae4dab6ade332bbd rdf:first sg:person.011256177562.53
31 rdf:rest Nd97c3e598fd84711b97e7873496a1f69
32 N566d888820104bd4805fa94b410ba62d schema:volumeNumber 14
33 rdf:type schema:PublicationVolume
34 N670a5414d5624b85a9ecd560abd232c9 rdf:first sg:person.0605540630.10
35 rdf:rest rdf:nil
36 N902e7766fd2d43a28466c70c8a319401 schema:name doi
37 schema:value 10.1007/s00029-008-0057-9
38 rdf:type schema:PropertyValue
39 Na22ad3f87a1b473f9a5ed6e998146268 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nd0c701ecb38a4378bfaf15250c17c38b schema:name dimensions_id
42 schema:value pub.1032322547
43 rdf:type schema:PropertyValue
44 Nd97c3e598fd84711b97e7873496a1f69 rdf:first sg:person.010102231546.41
45 rdf:rest N670a5414d5624b85a9ecd560abd232c9
46 Ne5a4981353bc46ccbe15e8978b767f51 schema:issueNumber 1
47 rdf:type schema:PublicationIssue
48 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
49 schema:name Mathematical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
52 schema:name Pure Mathematics
53 rdf:type schema:DefinedTerm
54 sg:journal.1136551 schema:issn 1022-1824
55 1420-9020
56 schema:name Selecta Mathematica
57 rdf:type schema:Periodical
58 sg:person.010102231546.41 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
59 schema:familyName Weyman
60 schema:givenName Jerzy
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010102231546.41
62 rdf:type schema:Person
63 sg:person.011256177562.53 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
64 schema:familyName Derksen
65 schema:givenName Harm
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011256177562.53
67 rdf:type schema:Person
68 sg:person.0605540630.10 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
69 schema:familyName Zelevinsky
70 schema:givenName Andrei
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605540630.10
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
74 schema:name Department of Mathematics, University of Michigan, 48109, Ann Arbor, MI, USA
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
77 schema:name Department of Mathematics, Northeastern University, 02115, Boston, MA, USA
78 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...