Regularizing effects of homogeneous evolution equations: the case of homogeneity order zero View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-27

AUTHORS

Daniel Hauer, José M. Mazón

ABSTRACT

In this paper, we develop a functional analytical theory for establishing that mild solutions of first-order Cauchy problems involving homogeneous operators of order zero are strong solutions; in particular, the first-order time derivative satisfies a global regularity estimate depending only on the initial value and the positive time. We apply those results to the Cauchy problem associated with the total variational flow operator and the nonlocal fractional 1-Laplace operator. More... »

PAGES

1-32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-019-00502-y

DOI

http://dx.doi.org/10.1007/s00028-019-00502-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113048022


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Mathematics and Statistics, The University of Sydney, 2006, Sydney, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hauer", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.5338.d", 
          "name": [
            "Departament d\u2019An\u00e0lisi Matem\u00e0tica, Universitat de Val\u00e8ncia, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maz\u00f3n", 
        "givenName": "Jos\u00e9 M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jfan.2000.3698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039432771"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-27", 
    "datePublishedReg": "2019-03-27", 
    "description": "In this paper, we develop a functional analytical theory for establishing that mild solutions of first-order Cauchy problems involving homogeneous operators of order zero are strong solutions; in particular, the first-order time derivative satisfies a global regularity estimate depending only on the initial value and the positive time. We apply those results to the Cauchy problem associated with the total variational flow operator and the nonlocal fractional 1-Laplace operator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-019-00502-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }
    ], 
    "name": "Regularizing effects of homogeneous evolution equations: the case of homogeneity order zero", 
    "pagination": "1-32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d34e2d40ca56948acf054a1012037847064240979d22ada1721d28b83812bfb9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-019-00502-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113048022"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-019-00502-y", 
      "https://app.dimensions.ai/details/publication/pub.1113048022"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78964_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-019-00502-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00502-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00502-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00502-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00502-y'


 

This table displays all metadata directly associated to this object as RDF triples.

66 TRIPLES      21 PREDICATES      25 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-019-00502-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N21f49697325d4f1bb90d893ee34efb7f
4 schema:citation https://doi.org/10.1006/jfan.2000.3698
5 schema:datePublished 2019-03-27
6 schema:datePublishedReg 2019-03-27
7 schema:description In this paper, we develop a functional analytical theory for establishing that mild solutions of first-order Cauchy problems involving homogeneous operators of order zero are strong solutions; in particular, the first-order time derivative satisfies a global regularity estimate depending only on the initial value and the positive time. We apply those results to the Cauchy problem associated with the total variational flow operator and the nonlocal fractional 1-Laplace operator.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf sg:journal.1136368
12 schema:name Regularizing effects of homogeneous evolution equations: the case of homogeneity order zero
13 schema:pagination 1-32
14 schema:productId N9942e971eb7d4a71a7560cc4308485d0
15 Ndcf21c6078ba4381bc591e6fa680a9d3
16 Neaafab657137423da8d3210f111e88c9
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113048022
18 https://doi.org/10.1007/s00028-019-00502-y
19 schema:sdDatePublished 2019-04-11T13:20
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N3bf147f63b824e3397eadaecc70d043f
22 schema:url https://link.springer.com/10.1007%2Fs00028-019-00502-y
23 sgo:license sg:explorer/license/
24 sgo:sdDataset articles
25 rdf:type schema:ScholarlyArticle
26 N21f49697325d4f1bb90d893ee34efb7f rdf:first Nc547acac3f824ecd9fb7d2cefce4a147
27 rdf:rest N48523abc933c4a538afbec5ea4eaee32
28 N3bf147f63b824e3397eadaecc70d043f schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N3d438f03900748f585d9a459758b9d86 schema:affiliation https://www.grid.ac/institutes/grid.5338.d
31 schema:familyName Mazón
32 schema:givenName José M.
33 rdf:type schema:Person
34 N48523abc933c4a538afbec5ea4eaee32 rdf:first N3d438f03900748f585d9a459758b9d86
35 rdf:rest rdf:nil
36 N9942e971eb7d4a71a7560cc4308485d0 schema:name doi
37 schema:value 10.1007/s00028-019-00502-y
38 rdf:type schema:PropertyValue
39 Nc547acac3f824ecd9fb7d2cefce4a147 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
40 schema:familyName Hauer
41 schema:givenName Daniel
42 rdf:type schema:Person
43 Ndcf21c6078ba4381bc591e6fa680a9d3 schema:name readcube_id
44 schema:value d34e2d40ca56948acf054a1012037847064240979d22ada1721d28b83812bfb9
45 rdf:type schema:PropertyValue
46 Neaafab657137423da8d3210f111e88c9 schema:name dimensions_id
47 schema:value pub.1113048022
48 rdf:type schema:PropertyValue
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1136368 schema:issn 1424-3199
56 1424-3202
57 schema:name Journal of Evolution Equations
58 rdf:type schema:Periodical
59 https://doi.org/10.1006/jfan.2000.3698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039432771
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
62 schema:name School of Mathematics and Statistics, The University of Sydney, 2006, Sydney, NSW, Australia
63 rdf:type schema:Organization
64 https://www.grid.ac/institutes/grid.5338.d schema:alternateName University of Valencia
65 schema:name Departament d’Anàlisi Matemàtica, Universitat de València, Valencia, Spain
66 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...