Ontology type: schema:ScholarlyArticle
2019-03-27
AUTHORSTomasz Klimsiak, Andrzej Rozkosz
ABSTRACTWe consider a family {Lt,t∈[0,T]} of closed operators generated by a family of regular (non-symmetric) Dirichlet forms {(B(t),V),t∈[0,T]} on L2(E;m). We show that a bounded (signed) measure μ on (0,T)×E is smooth, i.e. charges no set of zero parabolic capacity associated with ∂∂t+Lt, if and only if μ is of the form μ=f·m1+g1+∂tg2 with f∈L1((0,T)×E;dt⊗m), g1∈L2(0,T;V′), g2∈L2(0,T;V). We apply this decomposition to the study of the structure of additive functionals in the Revuz correspondence with smooth measures. As a by-product, we also give some existence and uniqueness results for solutions of semilinear equations involving the operator ∂∂t+Lt and a functional from the dual W′ of the space W={u∈L2(0,T;V):∂tu∈L2(0,T;V′)} on the right-hand side of the equation. More... »
PAGES1-44
http://scigraph.springernature.com/pub.10.1007/s00028-019-00500-0
DOIhttp://dx.doi.org/10.1007/s00028-019-00500-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1113044857
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Nicolaus Copernicus University",
"id": "https://www.grid.ac/institutes/grid.5374.5",
"name": [
"Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87\u2013100, Toru\u0144, Poland"
],
"type": "Organization"
},
"familyName": "Klimsiak",
"givenName": "Tomasz",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Nicolaus Copernicus University",
"id": "https://www.grid.ac/institutes/grid.5374.5",
"name": [
"Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87\u2013100, Toru\u0144, Poland"
],
"type": "Organization"
},
"familyName": "Rozkosz",
"givenName": "Andrzej",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/03605307908820124",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002911211"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1970-0279890-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005552941"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0094155",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005994988",
"https://doi.org/10.1007/bfb0094155"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-015-0350-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008063599",
"https://doi.org/10.1007/s00030-015-0350-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00030-015-0350-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008063599",
"https://doi.org/10.1007/s00030-015-0350-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10231-007-0057-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009202667",
"https://doi.org/10.1007/s10231-007-0057-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10231-007-0057-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009202667",
"https://doi.org/10.1007/s10231-007-0057-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10231-007-0057-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009202667",
"https://doi.org/10.1007/s10231-007-0057-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/form.1992.4.395",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015612233"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1023248531928",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022552955",
"https://doi.org/10.1023/a:1023248531928"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017995903763",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026312304",
"https://doi.org/10.1023/a:1017995903763"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2014.11.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027234922"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-011-0115-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037930063",
"https://doi.org/10.1007/s00028-011-0115-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00534082",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043936155",
"https://doi.org/10.1007/bf00534082"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spa.2015.06.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050823192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/0678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059343727"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0514044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062847516"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/s021902570400158x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062986884"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/ejp.v4-55",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064397402"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5802/aif.121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073136865"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0294-1449(16)30113-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083422986"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/tran/7214",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084177604"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/ba8108-7-2017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090729827"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-017-0416-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092979704",
"https://doi.org/10.1007/s00028-017-0416-0"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03-27",
"datePublishedReg": "2019-03-27",
"description": "We consider a family {Lt,t\u2208[0,T]} of closed operators generated by a family of regular (non-symmetric) Dirichlet forms {(B(t),V),t\u2208[0,T]} on L2(E;m). We show that a bounded (signed) measure \u03bc on (0,T)\u00d7E is smooth, i.e. charges no set of zero parabolic capacity associated with \u2202\u2202t+Lt, if and only if \u03bc is of the form \u03bc=f\u00b7m1+g1+\u2202tg2 with f\u2208L1((0,T)\u00d7E;dt\u2297m), g1\u2208L2(0,T;V\u2032), g2\u2208L2(0,T;V). We apply this decomposition to the study of the structure of additive functionals in the Revuz correspondence with smooth measures. As a by-product, we also give some existence and uniqueness results for solutions of semilinear equations involving the operator \u2202\u2202t+Lt and a functional from the dual W\u2032 of the space W={u\u2208L2(0,T;V):\u2202tu\u2208L2(0,T;V\u2032)} on the right-hand side of the equation.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-019-00500-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7416614",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
}
],
"name": "Smooth measures and capacities associated with nonlocal parabolic operators",
"pagination": "1-44",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"73f35928807b19f2beb41da884f2e14d74f63eaab92820ef4edf90a0d1bf5354"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-019-00500-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1113044857"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-019-00500-0",
"https://app.dimensions.ai/details/publication/pub.1113044857"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:20",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78965_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00028-019-00500-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00500-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00500-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00500-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00500-0'
This table displays all metadata directly associated to this object as RDF triples.
133 TRIPLES
21 PREDICATES
45 URIs
16 LITERALS
5 BLANK NODES