Discrete growth–decay–fragmentation equation: well-posedness and long-term dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

J. Banasiak, L. O. Joel, S. Shindin

ABSTRACT

In this paper, we consider discrete growth–decay–fragmentation equations that describe the size distribution of clusters that can undergo splitting, growth and decay. The clusters can be for instance animal groups that can split but can also grow, or decrease in size due to birth or death of individuals in the group, or chemical particles where the growth and decay can be due to surface deposition or erosion. We prove that for a large class of such problems, the solution semigroup is analytic and compact and thus has the asynchronous exponential growth property; that is, the long-term behaviour of any solution is given by a scalar exponential function multiplied by a vector, called the stable population distribution, that is independent on the initial conditions. More... »

PAGES

1-32

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-019-00499-4

DOI

http://dx.doi.org/10.1007/s00028-019-00499-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113177771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lodz University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa", 
            "Institute of Mathematics, Technical University of \u0141\u00f3d\u017a, \u0141\u00f3d\u017a, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Banasiak", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Durban, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joel", 
        "givenName": "L. O.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of KwaZulu-Natal", 
          "id": "https://www.grid.ac/institutes/grid.16463.36", 
          "name": [
            "School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Durban, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shindin", 
        "givenName": "S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00332-016-9336-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002922820", 
          "https://doi.org/10.1007/s00332-016-9336-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-016-9336-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002922820", 
          "https://doi.org/10.1007/s00332-016-9336-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10440-011-9666-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012606426", 
          "https://doi.org/10.1007/s10440-011-9666-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(94)00074-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013669898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(67)86592-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015652189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019439186", 
          "https://doi.org/10.1007/bf01200341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019439186", 
          "https://doi.org/10.1007/bf01200341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0065-227x(86)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020055770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0065-227x(86)90003-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020055770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02558510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022257939", 
          "https://doi.org/10.1007/bf02558510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-011-0129-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023136411", 
          "https://doi.org/10.1007/s00028-011-0129-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002850050062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023469690", 
          "https://doi.org/10.1007/s002850050062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/sapm195938177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026758819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2004.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028525112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0198-0149(90)90038-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037320201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0198-0149(90)90038-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037320201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2011.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039466708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5561-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042930842", 
          "https://doi.org/10.1007/978-1-4612-5561-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01013961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044749259", 
          "https://doi.org/10.1007/bf01013961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2015.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048582909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077197", 
          "https://doi.org/10.1007/bf00277748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00277748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049077197", 
          "https://doi.org/10.1007/bf00277748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1995.1210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052210474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpur.2005.04.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053289905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00164a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056180998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.5755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.41.5755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060481517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.43.656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060483517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1034086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062863388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s021820251000443x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1934592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069658785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdsb.2009.11.563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071736362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdsb.2012.17.445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071736798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2012.5.223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/krm.2016.9.251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071741053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/cms.2009.v7.n2.a12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072458906"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "In this paper, we consider discrete growth\u2013decay\u2013fragmentation equations that describe the size distribution of clusters that can undergo splitting, growth and decay. The clusters can be for instance animal groups that can split but can also grow, or decrease in size due to birth or death of individuals in the group, or chemical particles where the growth and decay can be due to surface deposition or erosion. We prove that for a large class of such problems, the solution semigroup is analytic and compact and thus has the asynchronous exponential growth property; that is, the long-term behaviour of any solution is given by a scalar exponential function multiplied by a vector, called the stable population distribution, that is independent on the initial conditions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-019-00499-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }
    ], 
    "name": "Discrete growth\u2013decay\u2013fragmentation equation: well-posedness and long-term dynamics", 
    "pagination": "1-32", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ff06d61d3f96bbf1e8b6eb72ed0d05b902dd6580a668288fe0b6b618adcd9a31"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-019-00499-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113177771"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-019-00499-4", 
      "https://app.dimensions.ai/details/publication/pub.1113177771"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130826_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-019-00499-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00499-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00499-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00499-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00499-4'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      54 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-019-00499-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncbed6ce141544c16b9469a45d4f41fe2
4 schema:citation sg:pub.10.1007/978-1-4612-5561-1
5 sg:pub.10.1007/bf00277748
6 sg:pub.10.1007/bf01013961
7 sg:pub.10.1007/bf01200341
8 sg:pub.10.1007/bf02558510
9 sg:pub.10.1007/s00028-011-0129-8
10 sg:pub.10.1007/s002850050062
11 sg:pub.10.1007/s00332-016-9336-3
12 sg:pub.10.1007/s10440-011-9666-y
13 https://doi.org/10.1002/sapm195938177
14 https://doi.org/10.1006/jmaa.1995.1210
15 https://doi.org/10.1016/0025-5564(94)00074-a
16 https://doi.org/10.1016/0065-227x(86)90003-1
17 https://doi.org/10.1016/0198-0149(90)90038-w
18 https://doi.org/10.1016/j.anihpc.2015.01.007
19 https://doi.org/10.1016/j.jde.2004.10.018
20 https://doi.org/10.1016/j.matpur.2005.04.001
21 https://doi.org/10.1016/j.nonrwa.2011.07.016
22 https://doi.org/10.1016/s0006-3495(67)86592-5
23 https://doi.org/10.1021/ma00164a010
24 https://doi.org/10.1103/physreva.41.5755
25 https://doi.org/10.1103/physreva.43.656
26 https://doi.org/10.1137/1034086
27 https://doi.org/10.1142/s021820251000443x
28 https://doi.org/10.2307/1934592
29 https://doi.org/10.3934/dcdsb.2009.11.563
30 https://doi.org/10.3934/dcdsb.2012.17.445
31 https://doi.org/10.3934/krm.2012.5.223
32 https://doi.org/10.3934/krm.2016.9.251
33 https://doi.org/10.4310/cms.2009.v7.n2.a12
34 schema:datePublished 2019-04-01
35 schema:datePublishedReg 2019-04-01
36 schema:description In this paper, we consider discrete growth–decay–fragmentation equations that describe the size distribution of clusters that can undergo splitting, growth and decay. The clusters can be for instance animal groups that can split but can also grow, or decrease in size due to birth or death of individuals in the group, or chemical particles where the growth and decay can be due to surface deposition or erosion. We prove that for a large class of such problems, the solution semigroup is analytic and compact and thus has the asynchronous exponential growth property; that is, the long-term behaviour of any solution is given by a scalar exponential function multiplied by a vector, called the stable population distribution, that is independent on the initial conditions.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf sg:journal.1136368
41 schema:name Discrete growth–decay–fragmentation equation: well-posedness and long-term dynamics
42 schema:pagination 1-32
43 schema:productId N98c3a19bb88a463c93844b6c89f069e2
44 Na8c4f91005c44a88979b423f2e467634
45 Ncf902114d364454b8c676fb9a839ed32
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113177771
47 https://doi.org/10.1007/s00028-019-00499-4
48 schema:sdDatePublished 2019-04-11T14:00
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N5382e5e704e545b0b5f984fcaca56b72
51 schema:url https://link.springer.com/10.1007%2Fs00028-019-00499-4
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N5382e5e704e545b0b5f984fcaca56b72 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N5afc17ae6deb4366b3d1c131b32f4570 rdf:first N5bcabba2ddf446a4ab13a6e4e5eacd3e
58 rdf:rest Nf540e3e0145e4278b273aec21ca03503
59 N5bcabba2ddf446a4ab13a6e4e5eacd3e schema:affiliation https://www.grid.ac/institutes/grid.16463.36
60 schema:familyName Joel
61 schema:givenName L. O.
62 rdf:type schema:Person
63 N918997349fd14f9580e5cac10fc95ffb schema:affiliation https://www.grid.ac/institutes/grid.16463.36
64 schema:familyName Shindin
65 schema:givenName S.
66 rdf:type schema:Person
67 N98c3a19bb88a463c93844b6c89f069e2 schema:name doi
68 schema:value 10.1007/s00028-019-00499-4
69 rdf:type schema:PropertyValue
70 Na8c4f91005c44a88979b423f2e467634 schema:name readcube_id
71 schema:value ff06d61d3f96bbf1e8b6eb72ed0d05b902dd6580a668288fe0b6b618adcd9a31
72 rdf:type schema:PropertyValue
73 Ncbed6ce141544c16b9469a45d4f41fe2 rdf:first Ne96293358f374d2d8e37cd5f3d8a8e4d
74 rdf:rest N5afc17ae6deb4366b3d1c131b32f4570
75 Ncf902114d364454b8c676fb9a839ed32 schema:name dimensions_id
76 schema:value pub.1113177771
77 rdf:type schema:PropertyValue
78 Ne96293358f374d2d8e37cd5f3d8a8e4d schema:affiliation https://www.grid.ac/institutes/grid.412284.9
79 schema:familyName Banasiak
80 schema:givenName J.
81 rdf:type schema:Person
82 Nf540e3e0145e4278b273aec21ca03503 rdf:first N918997349fd14f9580e5cac10fc95ffb
83 rdf:rest rdf:nil
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1136368 schema:issn 1424-3199
91 1424-3202
92 schema:name Journal of Evolution Equations
93 rdf:type schema:Periodical
94 sg:pub.10.1007/978-1-4612-5561-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042930842
95 https://doi.org/10.1007/978-1-4612-5561-1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00277748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049077197
98 https://doi.org/10.1007/bf00277748
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01013961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044749259
101 https://doi.org/10.1007/bf01013961
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf01200341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019439186
104 https://doi.org/10.1007/bf01200341
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02558510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022257939
107 https://doi.org/10.1007/bf02558510
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00028-011-0129-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023136411
110 https://doi.org/10.1007/s00028-011-0129-8
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s002850050062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023469690
113 https://doi.org/10.1007/s002850050062
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00332-016-9336-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002922820
116 https://doi.org/10.1007/s00332-016-9336-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10440-011-9666-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012606426
119 https://doi.org/10.1007/s10440-011-9666-y
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/sapm195938177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026758819
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/jmaa.1995.1210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052210474
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0025-5564(94)00074-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1013669898
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0065-227x(86)90003-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020055770
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0198-0149(90)90038-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1037320201
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.anihpc.2015.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048582909
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jde.2004.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028525112
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.matpur.2005.04.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053289905
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.nonrwa.2011.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039466708
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0006-3495(67)86592-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015652189
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/ma00164a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056180998
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.41.5755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060481517
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.43.656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060483517
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1137/1034086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062863388
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1142/s021820251000443x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963191
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2307/1934592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658785
152 rdf:type schema:CreativeWork
153 https://doi.org/10.3934/dcdsb.2009.11.563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071736362
154 rdf:type schema:CreativeWork
155 https://doi.org/10.3934/dcdsb.2012.17.445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071736798
156 rdf:type schema:CreativeWork
157 https://doi.org/10.3934/krm.2012.5.223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740899
158 rdf:type schema:CreativeWork
159 https://doi.org/10.3934/krm.2016.9.251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071741053
160 rdf:type schema:CreativeWork
161 https://doi.org/10.4310/cms.2009.v7.n2.a12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072458906
162 rdf:type schema:CreativeWork
163 https://www.grid.ac/institutes/grid.16463.36 schema:alternateName University of KwaZulu-Natal
164 schema:name School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Durban, South Africa
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.412284.9 schema:alternateName Lodz University of Technology
167 schema:name Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria, South Africa
168 Institute of Mathematics, Technical University of Łódź, Łódź, Poland
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...