Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

Fatma Gamze Düzgün, Sunra Mosconi, Vincenzo Vespri

ABSTRACT

We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times. More... »

PAGES

1-38

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-019-00493-w

DOI

http://dx.doi.org/10.1007/s00028-019-00493-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112587394


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hacettepe University", 
          "id": "https://www.grid.ac/institutes/grid.14442.37", 
          "name": [
            "Department of Mathematics, Hacettepe University, 06800, Beytepe, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00fczg\u00fcn", 
        "givenName": "Fatma Gamze", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Dipartimento di Matematica e Informatica, Universit\u00e0 degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mosconi", 
        "givenName": "Sunra", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Florence", 
          "id": "https://www.grid.ac/institutes/grid.8404.8", 
          "name": [
            "Dipartimento di Matematica e Informatica \u201cU. Dini\u201d, Universit\u00e0 di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vespri", 
        "givenName": "Vincenzo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00605-008-0059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000910081", 
          "https://doi.org/10.1007/s00605-008-0059-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00605-008-0059-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000910081", 
          "https://doi.org/10.1007/s00605-008-0059-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0362-546x(90)90076-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003062191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2016.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004872320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013932077", 
          "https://doi.org/10.1007/bf02567909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02567909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013932077", 
          "https://doi.org/10.1007/bf02567909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0895-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016958786", 
          "https://doi.org/10.1007/978-1-4612-0895-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0895-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016958786", 
          "https://doi.org/10.1007/978-1-4612-0895-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(91)90138-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017419765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1989-0962278-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017441672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10778-006-0110-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019997383", 
          "https://doi.org/10.1007/s10778-006-0110-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03377399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020084015", 
          "https://doi.org/10.1007/bf03377399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03377399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020084015", 
          "https://doi.org/10.1007/bf03377399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10958-012-0674-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163137", 
          "https://doi.org/10.1007/s10958-012-0674-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1027485468", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-1584-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027485468", 
          "https://doi.org/10.1007/978-1-4614-1584-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-1584-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027485468", 
          "https://doi.org/10.1007/978-1-4614-1584-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1944-0009795-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029737826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01773940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029910123", 
          "https://doi.org/10.1007/bf01773940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01773940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029910123", 
          "https://doi.org/10.1007/bf01773940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031418677", 
          "https://doi.org/10.1007/bf01158049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031418677", 
          "https://doi.org/10.1007/bf01158049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2008.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041651597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpur.2007.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051453792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210507000509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054895199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0512056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1997-040-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072267931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/ifb/337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/ifb/40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm1556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072371604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/acv-2017-0037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103364161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108774009", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2991/978-94-6239-112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108774009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-6239-112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108774009", 
          "https://doi.org/10.2991/978-94-6239-112-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2991/978-94-6239-112-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108774009", 
          "https://doi.org/10.2991/978-94-6239-112-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-07", 
    "datePublishedReg": "2019-03-07", 
    "description": "We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-019-00493-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }
    ], 
    "name": "Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations", 
    "pagination": "1-38", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4599d8cadc257e47be683ccb4c9f9a8dab1e7d005f77a40e40e152933fecc9eb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-019-00493-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112587394"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-019-00493-w", 
      "https://app.dimensions.ai/details/publication/pub.1112587394"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11724_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-019-00493-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00493-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00493-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00493-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-019-00493-w'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      51 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-019-00493-w schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne1814e3923d64ed6998ef7cb55f445d0
4 schema:citation sg:pub.10.1007/978-1-4612-0895-2
5 sg:pub.10.1007/978-1-4614-1584-8
6 sg:pub.10.1007/bf01158049
7 sg:pub.10.1007/bf01773940
8 sg:pub.10.1007/bf02567909
9 sg:pub.10.1007/bf03377399
10 sg:pub.10.1007/s00605-008-0059-x
11 sg:pub.10.1007/s10778-006-0110-3
12 sg:pub.10.1007/s10958-012-0674-x
13 sg:pub.10.2991/978-94-6239-112-3
14 https://app.dimensions.ai/details/publication/pub.1027485468
15 https://app.dimensions.ai/details/publication/pub.1108774009
16 https://doi.org/10.1016/0022-247x(91)90138-p
17 https://doi.org/10.1016/0362-546x(90)90076-s
18 https://doi.org/10.1016/j.jfa.2016.12.023
19 https://doi.org/10.1016/j.matpur.2007.09.002
20 https://doi.org/10.1016/j.na.2008.11.025
21 https://doi.org/10.1017/s0308210507000509
22 https://doi.org/10.1090/s0002-9947-1944-0009795-2
23 https://doi.org/10.1090/s0002-9947-1989-0962278-5
24 https://doi.org/10.1137/0512056
25 https://doi.org/10.1515/acv-2017-0037
26 https://doi.org/10.2991/978-94-6239-112-3
27 https://doi.org/10.4153/cjm-1997-040-2
28 https://doi.org/10.4171/ifb/337
29 https://doi.org/10.4171/ifb/40
30 https://doi.org/10.4213/sm1556
31 schema:datePublished 2019-03-07
32 schema:datePublishedReg 2019-03-07
33 schema:description We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf sg:journal.1136368
38 schema:name Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations
39 schema:pagination 1-38
40 schema:productId N55077106665a49ac8540bfd6c49b4c66
41 N7a87c55cd0ff40859e6e4910530726bc
42 Nd5b67c668f084a3ea16beab9d9f939e6
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112587394
44 https://doi.org/10.1007/s00028-019-00493-w
45 schema:sdDatePublished 2019-04-11T11:21
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Nf3bb0cab2cc948d68318142cac79b48e
48 schema:url https://link.springer.com/10.1007%2Fs00028-019-00493-w
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N32e92fef4ea741a8b552bf1a2c34825e schema:affiliation https://www.grid.ac/institutes/grid.14442.37
53 schema:familyName Düzgün
54 schema:givenName Fatma Gamze
55 rdf:type schema:Person
56 N4711d21cd2314afcb098d409ebd8acb9 rdf:first Nccc571f36d6b447f94b58b854ffe6ef1
57 rdf:rest rdf:nil
58 N5126955d96214148b6a61029d4688e57 schema:affiliation https://www.grid.ac/institutes/grid.8158.4
59 schema:familyName Mosconi
60 schema:givenName Sunra
61 rdf:type schema:Person
62 N55077106665a49ac8540bfd6c49b4c66 schema:name readcube_id
63 schema:value 4599d8cadc257e47be683ccb4c9f9a8dab1e7d005f77a40e40e152933fecc9eb
64 rdf:type schema:PropertyValue
65 N57674ebd5d484854abb56f86989ea04a rdf:first N5126955d96214148b6a61029d4688e57
66 rdf:rest N4711d21cd2314afcb098d409ebd8acb9
67 N7a87c55cd0ff40859e6e4910530726bc schema:name dimensions_id
68 schema:value pub.1112587394
69 rdf:type schema:PropertyValue
70 Nccc571f36d6b447f94b58b854ffe6ef1 schema:affiliation https://www.grid.ac/institutes/grid.8404.8
71 schema:familyName Vespri
72 schema:givenName Vincenzo
73 rdf:type schema:Person
74 Nd5b67c668f084a3ea16beab9d9f939e6 schema:name doi
75 schema:value 10.1007/s00028-019-00493-w
76 rdf:type schema:PropertyValue
77 Ne1814e3923d64ed6998ef7cb55f445d0 rdf:first N32e92fef4ea741a8b552bf1a2c34825e
78 rdf:rest N57674ebd5d484854abb56f86989ea04a
79 Nf3bb0cab2cc948d68318142cac79b48e schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
85 schema:name Pure Mathematics
86 rdf:type schema:DefinedTerm
87 sg:journal.1136368 schema:issn 1424-3199
88 1424-3202
89 schema:name Journal of Evolution Equations
90 rdf:type schema:Periodical
91 sg:pub.10.1007/978-1-4612-0895-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016958786
92 https://doi.org/10.1007/978-1-4612-0895-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-4614-1584-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027485468
95 https://doi.org/10.1007/978-1-4614-1584-8
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01158049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031418677
98 https://doi.org/10.1007/bf01158049
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01773940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029910123
101 https://doi.org/10.1007/bf01773940
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02567909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013932077
104 https://doi.org/10.1007/bf02567909
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf03377399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020084015
107 https://doi.org/10.1007/bf03377399
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s00605-008-0059-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000910081
110 https://doi.org/10.1007/s00605-008-0059-x
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s10778-006-0110-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019997383
113 https://doi.org/10.1007/s10778-006-0110-3
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10958-012-0674-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163137
116 https://doi.org/10.1007/s10958-012-0674-x
117 rdf:type schema:CreativeWork
118 sg:pub.10.2991/978-94-6239-112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108774009
119 https://doi.org/10.2991/978-94-6239-112-3
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1027485468 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1108774009 schema:CreativeWork
123 https://doi.org/10.1016/0022-247x(91)90138-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1017419765
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0362-546x(90)90076-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1003062191
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jfa.2016.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004872320
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.matpur.2007.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453792
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.na.2008.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041651597
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1017/s0308210507000509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054895199
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1090/s0002-9947-1944-0009795-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029737826
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1090/s0002-9947-1989-0962278-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017441672
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1137/0512056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847372
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1515/acv-2017-0037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103364161
142 rdf:type schema:CreativeWork
143 https://doi.org/10.2991/978-94-6239-112-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108774009
144 rdf:type schema:CreativeWork
145 https://doi.org/10.4153/cjm-1997-040-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072267931
146 rdf:type schema:CreativeWork
147 https://doi.org/10.4171/ifb/337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317554
148 rdf:type schema:CreativeWork
149 https://doi.org/10.4171/ifb/40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317599
150 rdf:type schema:CreativeWork
151 https://doi.org/10.4213/sm1556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072371604
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.14442.37 schema:alternateName Hacettepe University
154 schema:name Department of Mathematics, Hacettepe University, 06800, Beytepe, Ankara, Turkey
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.8158.4 schema:alternateName University of Catania
157 schema:name Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125, Catania, Italy
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.8404.8 schema:alternateName University of Florence
160 schema:name Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134, Florence, Italy
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...