On the Navier–Stokes equation perturbed by rough transport noise View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Martina Hofmanová, James-Michael Leahy, Torstein Nilssen

ABSTRACT

We consider the Navier–Stokes system in two and three space dimensions perturbed by transport noise and subject to periodic boundary conditions. The noise arises from perturbing the advecting velocity field by space–time-dependent noise that is smooth in space and rough in time. We study the system within the framework of rough path theory and, in particular, the recently developed theory of unbounded rough drivers. We introduce an intrinsic notion of a weak solution of the Navier–Stokes system, establish suitable a priori estimates and prove existence. In two dimensions, we prove that the solution is unique and stable with respect to the driving noise. More... »

PAGES

203-247

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-018-0473-z

DOI

http://dx.doi.org/10.1007/s00028-018-0473-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107105539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bielefeld University", 
          "id": "https://www.grid.ac/institutes/grid.7491.b", 
          "name": [
            "Institute of Mathematics, Technical University of Berlin, Berlin, Germany", 
            "Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Bielefeld, Postfach 100131, 33501, Bielefeld, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmanov\u00e1", 
        "givenName": "Martina", 
        "id": "sg:person.014360230025.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360230025.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Department of Mathematics, University of Southern California, Los Angeles, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leahy", 
        "givenName": "James-Michael", 
        "id": "sg:person.013056166111.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056166111.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oslo", 
          "id": "https://www.grid.ac/institutes/grid.5510.1", 
          "name": [
            "Institute of Mathematics, Technical University of Berlin, Berlin, Germany", 
            "Department of Mathematics, University of Oslo, Oslo, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nilssen", 
        "givenName": "Torstein", 
        "id": "sg:person.016123334045.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123334045.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01192467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004055734", 
          "https://doi.org/10.1007/bf01192467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01192467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004055734", 
          "https://doi.org/10.1007/bf01192467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07362999208809288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005760146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2009.01.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014321958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-011-0341-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015456559", 
          "https://doi.org/10.1007/s00440-011-0341-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-011-0341-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015456559", 
          "https://doi.org/10.1007/s00440-011-0341-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-013-0483-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020622630", 
          "https://doi.org/10.1007/s00440-013-0483-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-013-0483-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020622630", 
          "https://doi.org/10.1007/s00440-013-0483-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-014-0505-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027828712", 
          "https://doi.org/10.1007/s00222-014-0505-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11118-006-9013-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029093470", 
          "https://doi.org/10.1007/s11118-006-9013-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(99)00171-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034260886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02401743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039822348", 
          "https://doi.org/10.1007/bf02401743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-009-9091-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041644375", 
          "https://doi.org/10.1007/s00245-009-9091-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-009-9091-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041644375", 
          "https://doi.org/10.1007/s00245-009-9091-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00245-009-9091-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041644375", 
          "https://doi.org/10.1007/s00245-009-9091-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07362994.2011.581081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042997538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045477812", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-08332-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045477812", 
          "https://doi.org/10.1007/978-3-319-08332-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-08332-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045477812", 
          "https://doi.org/10.1007/978-3-319-08332-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/fmp.2015.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045761346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1692063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057763856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141001390312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036141002409167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218202591000046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062963750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/009117904000000630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064389184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/08-aop437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064390152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2017.0388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091862855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511845079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098663301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/afst.1553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099886500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jde.2018.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103245614"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We consider the Navier\u2013Stokes system in two and three space dimensions perturbed by transport noise and subject to periodic boundary conditions. The noise arises from perturbing the advecting velocity field by space\u2013time-dependent noise that is smooth in space and rough in time. We study the system within the framework of rough path theory and, in particular, the recently developed theory of unbounded rough drivers. We introduce an intrinsic notion of a weak solution of the Navier\u2013Stokes system, establish suitable a priori estimates and prove existence. In two dimensions, we prove that the solution is unique and stable with respect to the driving noise.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-018-0473-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "On the Navier\u2013Stokes equation perturbed by rough transport noise", 
    "pagination": "203-247", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11177c41d4a5cb0ffc235b237f2448818ae43fb14c2b3d1048835c9e76981729"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-018-0473-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107105539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-018-0473-z", 
      "https://app.dimensions.ai/details/publication/pub.1107105539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-018-0473-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0473-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0473-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0473-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0473-z'


 

This table displays all metadata directly associated to this object as RDF triples.

165 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-018-0473-z schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N32c48ef7586f44799c1a9dd97d60cdf7
4 schema:citation sg:pub.10.1007/978-3-319-08332-2
5 sg:pub.10.1007/bf01192467
6 sg:pub.10.1007/bf02401743
7 sg:pub.10.1007/s00222-014-0505-4
8 sg:pub.10.1007/s00245-009-9091-z
9 sg:pub.10.1007/s00440-011-0341-z
10 sg:pub.10.1007/s00440-013-0483-2
11 sg:pub.10.1007/s11118-006-9013-5
12 https://app.dimensions.ai/details/publication/pub.1045477812
13 https://doi.org/10.1016/j.jde.2009.01.026
14 https://doi.org/10.1016/j.jde.2018.04.006
15 https://doi.org/10.1016/s0167-2789(99)00171-2
16 https://doi.org/10.1017/cbo9780511845079
17 https://doi.org/10.1017/fmp.2015.2
18 https://doi.org/10.1063/1.1692063
19 https://doi.org/10.1080/07362994.2011.581081
20 https://doi.org/10.1080/07362999208809288
21 https://doi.org/10.1098/rspa.2017.0388
22 https://doi.org/10.1137/s0036141001390312
23 https://doi.org/10.1137/s0036141002409167
24 https://doi.org/10.1142/s0218202591000046
25 https://doi.org/10.1214/009117904000000630
26 https://doi.org/10.1214/08-aop437
27 https://doi.org/10.4171/rmi/240
28 https://doi.org/10.5802/afst.1553
29 schema:datePublished 2019-03
30 schema:datePublishedReg 2019-03-01
31 schema:description We consider the Navier–Stokes system in two and three space dimensions perturbed by transport noise and subject to periodic boundary conditions. The noise arises from perturbing the advecting velocity field by space–time-dependent noise that is smooth in space and rough in time. We study the system within the framework of rough path theory and, in particular, the recently developed theory of unbounded rough drivers. We introduce an intrinsic notion of a weak solution of the Navier–Stokes system, establish suitable a priori estimates and prove existence. In two dimensions, we prove that the solution is unique and stable with respect to the driving noise.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N82f973762565405ba1fb6a67e85d0395
36 Nbda1d48494eb439e96c063471a0dd3c9
37 sg:journal.1136368
38 schema:name On the Navier–Stokes equation perturbed by rough transport noise
39 schema:pagination 203-247
40 schema:productId N329b4f6f9d3845c8b12e851c31874677
41 Na71c20b2257949f5917e6b381d08ca7e
42 Nd273b6367b2f434f8789e8d7859dac43
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107105539
44 https://doi.org/10.1007/s00028-018-0473-z
45 schema:sdDatePublished 2019-04-11T10:39
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N740bfbefba7d4a5baa8857f90661bea8
48 schema:url https://link.springer.com/10.1007%2Fs00028-018-0473-z
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N329b4f6f9d3845c8b12e851c31874677 schema:name readcube_id
53 schema:value 11177c41d4a5cb0ffc235b237f2448818ae43fb14c2b3d1048835c9e76981729
54 rdf:type schema:PropertyValue
55 N32c48ef7586f44799c1a9dd97d60cdf7 rdf:first sg:person.014360230025.12
56 rdf:rest Ne99f27af3c6c4d8bbb2445b82ab8c753
57 N740bfbefba7d4a5baa8857f90661bea8 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N761024fa4d5f42ea91ad8d1444462a3d rdf:first sg:person.016123334045.72
60 rdf:rest rdf:nil
61 N82f973762565405ba1fb6a67e85d0395 schema:volumeNumber 19
62 rdf:type schema:PublicationVolume
63 Na71c20b2257949f5917e6b381d08ca7e schema:name doi
64 schema:value 10.1007/s00028-018-0473-z
65 rdf:type schema:PropertyValue
66 Nbda1d48494eb439e96c063471a0dd3c9 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Nd273b6367b2f434f8789e8d7859dac43 schema:name dimensions_id
69 schema:value pub.1107105539
70 rdf:type schema:PropertyValue
71 Ne99f27af3c6c4d8bbb2445b82ab8c753 rdf:first sg:person.013056166111.41
72 rdf:rest N761024fa4d5f42ea91ad8d1444462a3d
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:journal.1136368 schema:issn 1424-3199
80 1424-3202
81 schema:name Journal of Evolution Equations
82 rdf:type schema:Periodical
83 sg:person.013056166111.41 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
84 schema:familyName Leahy
85 schema:givenName James-Michael
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013056166111.41
87 rdf:type schema:Person
88 sg:person.014360230025.12 schema:affiliation https://www.grid.ac/institutes/grid.7491.b
89 schema:familyName Hofmanová
90 schema:givenName Martina
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014360230025.12
92 rdf:type schema:Person
93 sg:person.016123334045.72 schema:affiliation https://www.grid.ac/institutes/grid.5510.1
94 schema:familyName Nilssen
95 schema:givenName Torstein
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016123334045.72
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-319-08332-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045477812
99 https://doi.org/10.1007/978-3-319-08332-2
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf01192467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004055734
102 https://doi.org/10.1007/bf01192467
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf02401743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039822348
105 https://doi.org/10.1007/bf02401743
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00222-014-0505-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027828712
108 https://doi.org/10.1007/s00222-014-0505-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s00245-009-9091-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041644375
111 https://doi.org/10.1007/s00245-009-9091-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s00440-011-0341-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1015456559
114 https://doi.org/10.1007/s00440-011-0341-z
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00440-013-0483-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020622630
117 https://doi.org/10.1007/s00440-013-0483-2
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11118-006-9013-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029093470
120 https://doi.org/10.1007/s11118-006-9013-5
121 rdf:type schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1045477812 schema:CreativeWork
123 https://doi.org/10.1016/j.jde.2009.01.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014321958
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jde.2018.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103245614
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/s0167-2789(99)00171-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034260886
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1017/cbo9780511845079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098663301
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/fmp.2015.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045761346
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.1692063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057763856
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1080/07362994.2011.581081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042997538
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/07362999208809288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005760146
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1098/rspa.2017.0388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862855
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1137/s0036141001390312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875795
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1137/s0036141002409167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875880
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1142/s0218202591000046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062963750
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1214/009117904000000630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389184
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1214/08-aop437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064390152
150 rdf:type schema:CreativeWork
151 https://doi.org/10.4171/rmi/240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320525
152 rdf:type schema:CreativeWork
153 https://doi.org/10.5802/afst.1553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099886500
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
156 schema:name Department of Mathematics, University of Southern California, Los Angeles, USA
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.5510.1 schema:alternateName University of Oslo
159 schema:name Department of Mathematics, University of Oslo, Oslo, Norway
160 Institute of Mathematics, Technical University of Berlin, Berlin, Germany
161 rdf:type schema:Organization
162 https://www.grid.ac/institutes/grid.7491.b schema:alternateName Bielefeld University
163 schema:name Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
164 Institute of Mathematics, Technical University of Berlin, Berlin, Germany
165 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...