Ontology type: schema:ScholarlyArticle
2019-03
AUTHORSGuy Vallet, Aleksandra Zimmermann
ABSTRACTOur aim is the study of well-posedness for the stochastic evolution equation du-div(|∇u|p-2∇u+F(u))dt=H(u)dW,for T>0, on a bounded Lipschitz domain D⊂Rd with homogeneous Dirichlet boundary conditions, initial values u0∈L2(D), p>2 and F:R→Rd Lipschitz continuous. W(t) is a cylindrical Wiener process in L2(D) with respect to a filtration (Ft) satisfying the usual assumptions on a complete, countably generated probability space (Ω,F,P). We consider the case of multiplicative noise satisfying appropriate regularity conditions. By a semi-implicit time discretization, we obtain approximate solutions. Using the theorems of Skorokhod and Prokhorov, we are able to pass to the limit and show existence of martingale solutions. We establish pathwise L1-contraction and uniqueness and obtain existence and uniqueness of strong solutions. More... »
PAGES153-202
http://scigraph.springernature.com/pub.10.1007/s00028-018-0472-0
DOIhttp://dx.doi.org/10.1007/s00028-018-0472-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1106837145
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"LMAP UMR CNRS 5142, IPRA BP 1155, 64013, Pau Cedex, France"
],
"type": "Organization"
},
"familyName": "Vallet",
"givenName": "Guy",
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Duisburg-Essen",
"id": "https://www.grid.ac/institutes/grid.5718.b",
"name": [
"Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127, Essen, Germany"
],
"type": "Organization"
},
"familyName": "Zimmermann",
"givenName": "Aleksandra",
"id": "sg:person.012235240003.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012235240003.87"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1080/03605302.2011.574243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001104138"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01192467",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004055734",
"https://doi.org/10.1007/bf01192467"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01192467",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004055734",
"https://doi.org/10.1007/bf01192467"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01765315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015930030",
"https://doi.org/10.1007/bf01765315"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01765315",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015930030",
"https://doi.org/10.1007/bf01765315"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physd.2011.03.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018209781"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01203833",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029231810",
"https://doi.org/10.1007/bf01203833"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01203833",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029231810",
"https://doi.org/10.1007/bf01203833"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02764657",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029887850",
"https://doi.org/10.1007/bf02764657"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07362994.2013.799025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033239325"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00021-015-0203-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033413824",
"https://doi.org/10.1007/s00021-015-0203-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-5542-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033734010",
"https://doi.org/10.1007/978-1-4419-5542-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-5542-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033734010",
"https://doi.org/10.1007/978-1-4419-5542-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2012.09.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039828880"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1040171006",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-22354-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040171006",
"https://doi.org/10.1007/978-3-319-22354-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-22354-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040171006",
"https://doi.org/10.1007/978-3-319-22354-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spa.2013.06.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044074967"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-0513-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051714280",
"https://doi.org/10.1007/978-3-0348-0513-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-0513-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051714280",
"https://doi.org/10.1007/978-3-0348-0513-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/07362994.2012.628916",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052071829"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01762360",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053563935",
"https://doi.org/10.1007/bf01762360"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01762360",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053563935",
"https://doi.org/10.1007/bf01762360"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imanum/drt020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059689814"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/009117906000000331",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064389338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1214/ejp.v15-789",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064396773"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1512/iumj.1971.20.20046",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067511213"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1215/kjm/1250523620",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1083509945"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.spa.2017.01.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084109263"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511666223",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098728233"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03",
"datePublishedReg": "2019-03-01",
"description": "Our aim is the study of well-posedness for the stochastic evolution equation du-div(|\u2207u|p-2\u2207u+F(u))dt=H(u)dW,for T>0, on a bounded Lipschitz domain D\u2282Rd with homogeneous Dirichlet boundary conditions, initial values u0\u2208L2(D), p>2 and F:R\u2192Rd Lipschitz continuous. W(t) is a cylindrical Wiener process in L2(D) with respect to a filtration (Ft) satisfying the usual assumptions on a complete, countably generated probability space (\u03a9,F,P). We consider the case of multiplicative noise satisfying appropriate regularity conditions. By a semi-implicit time discretization, we obtain approximate solutions. Using the theorems of Skorokhod and Prokhorov, we are able to pass to the limit and show existence of martingale solutions. We establish pathwise L1-contraction and uniqueness and obtain existence and uniqueness of strong solutions.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-018-0472-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"name": "Well-posedness for a pseudomonotone evolution problem with multiplicative noise",
"pagination": "153-202",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"61d52b4fac3dd82bb8353b3f47702505bdd94227bc814a790874039b30c7810e"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-018-0472-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1106837145"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-018-0472-0",
"https://app.dimensions.ai/details/publication/pub.1106837145"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113676_00000005.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00028-018-0472-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0472-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0472-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0472-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0472-0'
This table displays all metadata directly associated to this object as RDF triples.
146 TRIPLES
21 PREDICATES
50 URIs
19 LITERALS
7 BLANK NODES