Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Martin Heida, Robert I. A. Patterson, D. R. Michiel Renger

ABSTRACT

We study functions of bounded variation with values in a Banach or in a metric space. In finite dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural fourth topology. We provide some insight into the structure of these four topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin–Lions theorem. After this we study the Borel σ-algebras induced by these topologies, and we provide some results about probability measures on the space of functions of bounded variation, which can be used to study stochastic processes of bounded variation. More... »

PAGES

111-152

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-018-0471-1

DOI

http://dx.doi.org/10.1007/s00028-018-0471-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106984167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics", 
          "id": "https://www.grid.ac/institutes/grid.433806.a", 
          "name": [
            "Weierstrass Institute, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Heida", 
        "givenName": "Martin", 
        "id": "sg:person.012532642467.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532642467.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics", 
          "id": "https://www.grid.ac/institutes/grid.433806.a", 
          "name": [
            "Weierstrass Institute, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Patterson", 
        "givenName": "Robert I. A.", 
        "id": "sg:person.013643200121.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643200121.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weierstrass Institute for Applied Analysis and Stochastics", 
          "id": "https://www.grid.ac/institutes/grid.433806.a", 
          "name": [
            "Weierstrass Institute, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Renger", 
        "givenName": "D. R. Michiel", 
        "id": "sg:person.07775001452.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775001452.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002050200194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001036511", 
          "https://doi.org/10.1007/s002050200194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2014.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006386490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306418", 
          "https://doi.org/10.1007/978-3-540-34514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34514-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012306418", 
          "https://doi.org/10.1007/978-3-540-34514-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/55/1/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020183737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.anihpc.2014.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020642940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v2-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027550871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1034115433", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1034115433", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-004-0267-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034999185", 
          "https://doi.org/10.1007/s00526-004-0267-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00526-004-0267-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034999185", 
          "https://doi.org/10.1007/s00526-004-0267-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-2624-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039242595", 
          "https://doi.org/10.1007/978-3-7091-2624-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-2624-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039242595", 
          "https://doi.org/10.1007/978-3-7091-2624-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jaa.2004.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044413283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053563935", 
          "https://doi.org/10.1007/bf01762360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053563935", 
          "https://doi.org/10.1007/bf01762360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219199707002502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062991196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0219199712500435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062991445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/14-aihp601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064394266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/dcdss.2015.8.773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071738144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-20-1-47-68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091703131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705768", 
          "https://doi.org/10.1007/978-1-4757-4383-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705768", 
          "https://doi.org/10.1007/978-1-4757-4383-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4383-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705768", 
          "https://doi.org/10.1007/978-1-4757-4383-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We study functions of bounded variation with values in a Banach or in a metric space. In finite dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural fourth topology. We provide some insight into the structure of these four topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin\u2013Lions theorem. After this we study the Borel \u03c3-algebras induced by these topologies, and we provide some results about probability measures on the space of functions of bounded variation, which can be used to study stochastic processes of bounded variation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-018-0471-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space", 
    "pagination": "111-152", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "167ca612ebf7d0eeb572d1576f4021b77854d7c1dfd5546649a0b786cb11dee7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-018-0471-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106984167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-018-0471-1", 
      "https://app.dimensions.ai/details/publication/pub.1106984167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-018-0471-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0471-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0471-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0471-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0471-1'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-018-0471-1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N541e7c4dd0f845b2b40b9a99a93e0c8f
4 schema:citation sg:pub.10.1007/978-1-4757-4383-8
5 sg:pub.10.1007/978-3-540-34514-5
6 sg:pub.10.1007/978-3-7091-2624-0
7 sg:pub.10.1007/bf01762360
8 sg:pub.10.1007/s002050200194
9 sg:pub.10.1007/s00526-004-0267-8
10 https://app.dimensions.ai/details/publication/pub.1034115433
11 https://doi.org/10.1016/j.anihpc.2014.01.005
12 https://doi.org/10.1016/j.jfa.2014.02.002
13 https://doi.org/10.1088/1742-6596/55/1/014
14 https://doi.org/10.1142/s0219199707002502
15 https://doi.org/10.1142/s0219199712500435
16 https://doi.org/10.1214/14-aihp601
17 https://doi.org/10.1214/ejp.v2-18
18 https://doi.org/10.1515/jaa.2004.1
19 https://doi.org/10.3934/dcdss.2015.8.773
20 https://doi.org/10.4064/sm-20-1-47-68
21 schema:datePublished 2019-03
22 schema:datePublishedReg 2019-03-01
23 schema:description We study functions of bounded variation with values in a Banach or in a metric space. In finite dimensions, there are three well-known topologies; we argue that in infinite dimensions there is a natural fourth topology. We provide some insight into the structure of these four topologies. In particular, we study the meaning of convergence, duality and regularity for these topologies and provide some useful compactness criteria, also related to the classical Aubin–Lions theorem. After this we study the Borel σ-algebras induced by these topologies, and we provide some results about probability measures on the space of functions of bounded variation, which can be used to study stochastic processes of bounded variation.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Na93981f397cf4a14ad84c2a070e86d84
28 Nac9124641e44479397ab7f1dd059e06b
29 sg:journal.1136368
30 schema:name Topologies and measures on the space of functions of bounded variation taking values in a Banach or metric space
31 schema:pagination 111-152
32 schema:productId N53f29a64d3084d22ae7aab88782e4252
33 N8c90fee4c73d4221bcc5e6c1226e744a
34 Nf6c4a49038f447e284df530ac3e30831
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106984167
36 https://doi.org/10.1007/s00028-018-0471-1
37 schema:sdDatePublished 2019-04-11T10:30
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N4c86604967bc4352baab87510fa00da4
40 schema:url https://link.springer.com/10.1007%2Fs00028-018-0471-1
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N084bf5c46d8d4d96a3b317b1bff11a40 rdf:first sg:person.07775001452.90
45 rdf:rest rdf:nil
46 N470060b81e074c309594a7cadb67be6e rdf:first sg:person.013643200121.83
47 rdf:rest N084bf5c46d8d4d96a3b317b1bff11a40
48 N4c86604967bc4352baab87510fa00da4 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N53f29a64d3084d22ae7aab88782e4252 schema:name readcube_id
51 schema:value 167ca612ebf7d0eeb572d1576f4021b77854d7c1dfd5546649a0b786cb11dee7
52 rdf:type schema:PropertyValue
53 N541e7c4dd0f845b2b40b9a99a93e0c8f rdf:first sg:person.012532642467.14
54 rdf:rest N470060b81e074c309594a7cadb67be6e
55 N8c90fee4c73d4221bcc5e6c1226e744a schema:name doi
56 schema:value 10.1007/s00028-018-0471-1
57 rdf:type schema:PropertyValue
58 Na93981f397cf4a14ad84c2a070e86d84 schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 Nac9124641e44479397ab7f1dd059e06b schema:volumeNumber 19
61 rdf:type schema:PublicationVolume
62 Nf6c4a49038f447e284df530ac3e30831 schema:name dimensions_id
63 schema:value pub.1106984167
64 rdf:type schema:PropertyValue
65 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
66 schema:name Mathematical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
69 schema:name Pure Mathematics
70 rdf:type schema:DefinedTerm
71 sg:journal.1136368 schema:issn 1424-3199
72 1424-3202
73 schema:name Journal of Evolution Equations
74 rdf:type schema:Periodical
75 sg:person.012532642467.14 schema:affiliation https://www.grid.ac/institutes/grid.433806.a
76 schema:familyName Heida
77 schema:givenName Martin
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012532642467.14
79 rdf:type schema:Person
80 sg:person.013643200121.83 schema:affiliation https://www.grid.ac/institutes/grid.433806.a
81 schema:familyName Patterson
82 schema:givenName Robert I. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013643200121.83
84 rdf:type schema:Person
85 sg:person.07775001452.90 schema:affiliation https://www.grid.ac/institutes/grid.433806.a
86 schema:familyName Renger
87 schema:givenName D. R. Michiel
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775001452.90
89 rdf:type schema:Person
90 sg:pub.10.1007/978-1-4757-4383-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705768
91 https://doi.org/10.1007/978-1-4757-4383-8
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-540-34514-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012306418
94 https://doi.org/10.1007/978-3-540-34514-5
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-7091-2624-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039242595
97 https://doi.org/10.1007/978-3-7091-2624-0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01762360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053563935
100 https://doi.org/10.1007/bf01762360
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s002050200194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001036511
103 https://doi.org/10.1007/s002050200194
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00526-004-0267-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034999185
106 https://doi.org/10.1007/s00526-004-0267-8
107 rdf:type schema:CreativeWork
108 https://app.dimensions.ai/details/publication/pub.1034115433 schema:CreativeWork
109 https://doi.org/10.1016/j.anihpc.2014.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020642940
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jfa.2014.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006386490
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/1742-6596/55/1/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020183737
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1142/s0219199707002502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062991196
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1142/s0219199712500435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062991445
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1214/14-aihp601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064394266
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1214/ejp.v2-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027550871
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1515/jaa.2004.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044413283
124 rdf:type schema:CreativeWork
125 https://doi.org/10.3934/dcdss.2015.8.773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071738144
126 rdf:type schema:CreativeWork
127 https://doi.org/10.4064/sm-20-1-47-68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703131
128 rdf:type schema:CreativeWork
129 https://www.grid.ac/institutes/grid.433806.a schema:alternateName Weierstrass Institute for Applied Analysis and Stochastics
130 schema:name Weierstrass Institute, Berlin, Germany
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...