Ontology type: schema:ScholarlyArticle Open Access: True
2019-03
AUTHORSBirgit Jacob, Julia T. Kaiser
ABSTRACTWe consider the well-posedness of a class of hyperbolic partial differential equations on a one-dimensional spatial domain. This class includes in particular infinite networks of transport, wave and beam equations, or even combinations of these. Equivalent conditions for contraction semigroup generation are derived. We consider these equations on a finite interval as well as on a semi-axis. More... »
PAGES91-109
http://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2
DOIhttp://dx.doi.org/10.1007/s00028-018-0470-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1107186398
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Wuppertal",
"id": "https://www.grid.ac/institutes/grid.7787.f",
"name": [
"School of Mathematics and Natural Sciences, University of Wuppertal, Gau\u00dfstra\u00dfe 20, 42119, Wuppertal, Germany"
],
"type": "Organization"
},
"familyName": "Jacob",
"givenName": "Birgit",
"id": "sg:person.014614043551.82",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014614043551.82"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Wuppertal",
"id": "https://www.grid.ac/institutes/grid.7787.f",
"name": [
"School of Mathematics and Natural Sciences, University of Wuppertal, Gau\u00dfstra\u00dfe 20, 42119, Wuppertal, Germany"
],
"type": "Organization"
},
"familyName": "Kaiser",
"givenName": "Julia T.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/mana.201500054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005370359"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1005502840",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/b137541",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005502840",
"https://doi.org/10.1007/b137541"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/b137541",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005502840",
"https://doi.org/10.1007/b137541"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00207179.2014.993337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006405851"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-014-0271-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024930399",
"https://doi.org/10.1007/s00028-014-0271-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00028-013-0179-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028886300",
"https://doi.org/10.1007/s00028-013-0179-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0393-0440(01)00083-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029279859"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1032716770",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-0399-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032716770",
"https://doi.org/10.1007/978-3-0348-0399-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-0399-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032716770",
"https://doi.org/10.1007/978-3-0348-0399-1"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1036878998",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-32062-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036878998",
"https://doi.org/10.1007/978-3-319-32062-5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/32/4/006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040167915"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04621-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041062527",
"https://doi.org/10.1007/978-3-319-04621-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-04621-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041062527",
"https://doi.org/10.1007/978-3-319-04621-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1051/cocv/2009036",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056951788"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/040611677",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062845131"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/eect.2014.3.207",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071738360"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/pspum/077/2459885",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089197705"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-03",
"datePublishedReg": "2019-03-01",
"description": "We consider the well-posedness of a class of hyperbolic partial differential equations on a one-dimensional spatial domain. This class includes in particular infinite networks of transport, wave and beam equations, or even combinations of these. Equivalent conditions for contraction semigroup generation are derived. We consider these equations on a finite interval as well as on a semi-axis.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-018-0470-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"name": "Well-posedness of systems of 1-D hyperbolic partial differential equations",
"pagination": "91-109",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ae4ee759c88fc028228300dedc4a0c186123b9a356344bfdaae702ec280534ba"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-018-0470-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1107186398"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-018-0470-2",
"https://app.dimensions.ai/details/publication/pub.1107186398"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00028-018-0470-2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
21 PREDICATES
44 URIs
19 LITERALS
7 BLANK NODES