Well-posedness of systems of 1-D hyperbolic partial differential equations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03

AUTHORS

Birgit Jacob, Julia T. Kaiser

ABSTRACT

We consider the well-posedness of a class of hyperbolic partial differential equations on a one-dimensional spatial domain. This class includes in particular infinite networks of transport, wave and beam equations, or even combinations of these. Equivalent conditions for contraction semigroup generation are derived. We consider these equations on a finite interval as well as on a semi-axis. More... »

PAGES

91-109

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2

DOI

http://dx.doi.org/10.1007/s00028-018-0470-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107186398


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "School of Mathematics and Natural Sciences, University of Wuppertal, Gau\u00dfstra\u00dfe 20, 42119, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacob", 
        "givenName": "Birgit", 
        "id": "sg:person.014614043551.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014614043551.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wuppertal", 
          "id": "https://www.grid.ac/institutes/grid.7787.f", 
          "name": [
            "School of Mathematics and Natural Sciences, University of Wuppertal, Gau\u00dfstra\u00dfe 20, 42119, Wuppertal, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaiser", 
        "givenName": "Julia T.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mana.201500054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005370359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1005502840", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b137541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502840", 
          "https://doi.org/10.1007/b137541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b137541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005502840", 
          "https://doi.org/10.1007/b137541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207179.2014.993337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006405851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-014-0271-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024930399", 
          "https://doi.org/10.1007/s00028-014-0271-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-013-0179-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028886300", 
          "https://doi.org/10.1007/s00028-013-0179-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0393-0440(01)00083-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029279859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1032716770", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0399-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032716770", 
          "https://doi.org/10.1007/978-3-0348-0399-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0399-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032716770", 
          "https://doi.org/10.1007/978-3-0348-0399-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036878998", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036878998", 
          "https://doi.org/10.1007/978-3-319-32062-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/32/4/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040167915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041062527", 
          "https://doi.org/10.1007/978-3-319-04621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04621-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041062527", 
          "https://doi.org/10.1007/978-3-319-04621-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/cocv/2009036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056951788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/040611677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062845131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/eect.2014.3.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071738360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/077/2459885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089197705"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We consider the well-posedness of a class of hyperbolic partial differential equations on a one-dimensional spatial domain. This class includes in particular infinite networks of transport, wave and beam equations, or even combinations of these. Equivalent conditions for contraction semigroup generation are derived. We consider these equations on a finite interval as well as on a semi-axis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-018-0470-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Well-posedness of systems of 1-D hyperbolic partial differential equations", 
    "pagination": "91-109", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ae4ee759c88fc028228300dedc4a0c186123b9a356344bfdaae702ec280534ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-018-0470-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107186398"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-018-0470-2", 
      "https://app.dimensions.ai/details/publication/pub.1107186398"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-018-0470-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0470-2'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-018-0470-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nd9ff28e9ed614a5fa9bcf09cd3801331
4 schema:citation sg:pub.10.1007/978-3-0348-0399-1
5 sg:pub.10.1007/978-3-319-04621-1
6 sg:pub.10.1007/978-3-319-32062-5
7 sg:pub.10.1007/b137541
8 sg:pub.10.1007/s00028-013-0179-1
9 sg:pub.10.1007/s00028-014-0271-1
10 https://app.dimensions.ai/details/publication/pub.1005502840
11 https://app.dimensions.ai/details/publication/pub.1032716770
12 https://app.dimensions.ai/details/publication/pub.1036878998
13 https://doi.org/10.1002/mana.201500054
14 https://doi.org/10.1016/s0393-0440(01)00083-3
15 https://doi.org/10.1051/cocv/2009036
16 https://doi.org/10.1080/00207179.2014.993337
17 https://doi.org/10.1088/0305-4470/32/4/006
18 https://doi.org/10.1090/pspum/077/2459885
19 https://doi.org/10.1137/040611677
20 https://doi.org/10.3934/eect.2014.3.207
21 schema:datePublished 2019-03
22 schema:datePublishedReg 2019-03-01
23 schema:description We consider the well-posedness of a class of hyperbolic partial differential equations on a one-dimensional spatial domain. This class includes in particular infinite networks of transport, wave and beam equations, or even combinations of these. Equivalent conditions for contraction semigroup generation are derived. We consider these equations on a finite interval as well as on a semi-axis.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N07bb0f5eebdf4fee83495d4863990788
28 Nfa4e8982c86f4b2cadb048de5ec2d6c2
29 sg:journal.1136368
30 schema:name Well-posedness of systems of 1-D hyperbolic partial differential equations
31 schema:pagination 91-109
32 schema:productId N078883f02e0b474486fd52a614ea4837
33 N1ee5b101a2ca48e59228117caf6874c4
34 N55eca595eff94f3799073b113d771635
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107186398
36 https://doi.org/10.1007/s00028-018-0470-2
37 schema:sdDatePublished 2019-04-11T10:31
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N0f4f3ce0f9424b2d9d5124c76c1fd353
40 schema:url https://link.springer.com/10.1007%2Fs00028-018-0470-2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N078883f02e0b474486fd52a614ea4837 schema:name readcube_id
45 schema:value ae4ee759c88fc028228300dedc4a0c186123b9a356344bfdaae702ec280534ba
46 rdf:type schema:PropertyValue
47 N07bb0f5eebdf4fee83495d4863990788 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N0f4f3ce0f9424b2d9d5124c76c1fd353 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N1ee5b101a2ca48e59228117caf6874c4 schema:name doi
52 schema:value 10.1007/s00028-018-0470-2
53 rdf:type schema:PropertyValue
54 N55eca595eff94f3799073b113d771635 schema:name dimensions_id
55 schema:value pub.1107186398
56 rdf:type schema:PropertyValue
57 Na458016d0f6844c0ae0cc10b6e786612 rdf:first Naed3f6c6b2ae49c79aa5b2eb1717db99
58 rdf:rest rdf:nil
59 Naed3f6c6b2ae49c79aa5b2eb1717db99 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
60 schema:familyName Kaiser
61 schema:givenName Julia T.
62 rdf:type schema:Person
63 Nd9ff28e9ed614a5fa9bcf09cd3801331 rdf:first sg:person.014614043551.82
64 rdf:rest Na458016d0f6844c0ae0cc10b6e786612
65 Nfa4e8982c86f4b2cadb048de5ec2d6c2 schema:volumeNumber 19
66 rdf:type schema:PublicationVolume
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
71 schema:name Applied Mathematics
72 rdf:type schema:DefinedTerm
73 sg:journal.1136368 schema:issn 1424-3199
74 1424-3202
75 schema:name Journal of Evolution Equations
76 rdf:type schema:Periodical
77 sg:person.014614043551.82 schema:affiliation https://www.grid.ac/institutes/grid.7787.f
78 schema:familyName Jacob
79 schema:givenName Birgit
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014614043551.82
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-0348-0399-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032716770
83 https://doi.org/10.1007/978-3-0348-0399-1
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-319-04621-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041062527
86 https://doi.org/10.1007/978-3-319-04621-1
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-319-32062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036878998
89 https://doi.org/10.1007/978-3-319-32062-5
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/b137541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005502840
92 https://doi.org/10.1007/b137541
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00028-013-0179-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028886300
95 https://doi.org/10.1007/s00028-013-0179-1
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00028-014-0271-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024930399
98 https://doi.org/10.1007/s00028-014-0271-1
99 rdf:type schema:CreativeWork
100 https://app.dimensions.ai/details/publication/pub.1005502840 schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1032716770 schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1036878998 schema:CreativeWork
103 https://doi.org/10.1002/mana.201500054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005370359
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0393-0440(01)00083-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029279859
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1051/cocv/2009036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056951788
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1080/00207179.2014.993337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006405851
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1088/0305-4470/32/4/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040167915
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1090/pspum/077/2459885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089197705
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1137/040611677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062845131
116 rdf:type schema:CreativeWork
117 https://doi.org/10.3934/eect.2014.3.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071738360
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.7787.f schema:alternateName University of Wuppertal
120 schema:name School of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119, Wuppertal, Germany
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...