Heat kernel asymptotics of the subordinator and subordinate Brownian motion View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

M. A. Fahrenwaldt

ABSTRACT

For a class of Laplace exponents, we consider the transition density of the subordinator and the heat kernel of the corresponding subordinate Brownian motion. We derive explicit approximate expressions for these objects in the form of asymptotic expansions: via the saddle point method for the subordinator’s transition density and via the Mellin transform for the subordinate heat kernel. The latter builds on ideas from index theory using zeta functions. In either case, we highlight the role played by the analyticity of the Laplace exponent for the qualitative properties of the asymptotics. More... »

PAGES

33-70

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00028-018-0468-9

DOI

http://dx.doi.org/10.1007/s00028-018-0468-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106705623


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Maxwell Institute for Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.500539.a", 
          "name": [
            "Department of Actuarial Mathematics and Statistics, Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrenwaldt", 
        "givenName": "M. A.", 
        "id": "sg:person.013422372413.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10959-010-0300-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002113502", 
          "https://doi.org/10.1007/s10959-010-0300-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-02141-1_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003543966", 
          "https://doi.org/10.1007/978-3-642-02141-1_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700039239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700039239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006877489", 
          "https://doi.org/10.1007/s11425-009-0100-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006877489", 
          "https://doi.org/10.1007/s11425-009-0100-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007964585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007964585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2009.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011430036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1015965827", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4995-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015965827", 
          "https://doi.org/10.1007/978-0-8176-4995-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-8176-4995-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015965827", 
          "https://doi.org/10.1007/978-0-8176-4995-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016069514", 
          "https://doi.org/10.1007/978-1-4612-0197-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0197-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016069514", 
          "https://doi.org/10.1007/978-1-4612-0197-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023735319", 
          "https://doi.org/10.1007/s00440-007-0070-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023735319", 
          "https://doi.org/10.1007/s00440-007-0070-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00440-007-0070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023735319", 
          "https://doi.org/10.1007/s00440-007-0070-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/plms/pdw043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041935891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11118-015-9514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042027922", 
          "https://doi.org/10.1007/s11118-015-9514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02921566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043165353", 
          "https://doi.org/10.1007/bf02921566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1976-0399479-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052180128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2011-05408-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059335506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aop611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/ejp.v16-909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064396858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176992257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-017-2344-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083537441", 
          "https://doi.org/10.1007/s00020-017-2344-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-017-2344-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083537441", 
          "https://doi.org/10.1007/s00020-017-2344-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214427880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084458764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56478-9_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085932121", 
          "https://doi.org/10.1007/978-3-642-56478-9_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56478-9_34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085932121", 
          "https://doi.org/10.1007/978-3-642-56478-9_34"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098551295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139172189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511809781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098713390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/4955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098931915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108334960"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "For a class of Laplace exponents, we consider the transition density of the subordinator and the heat kernel of the corresponding subordinate Brownian motion. We derive explicit approximate expressions for these objects in the form of asymptotic expansions: via the saddle point method for the subordinator\u2019s transition density and via the Mellin transform for the subordinate heat kernel. The latter builds on ideas from index theory using zeta functions. In either case, we highlight the role played by the analyticity of the Laplace exponent for the qualitative properties of the asymptotics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00028-018-0468-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136368", 
        "issn": [
          "1424-3199", 
          "1424-3202"
        ], 
        "name": "Journal of Evolution Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Heat kernel asymptotics of the subordinator and subordinate Brownian motion", 
    "pagination": "33-70", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77e52eb6e04e8a40e708926d76c0ccc95efad342414038bb891717525a3932f8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00028-018-0468-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106705623"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00028-018-0468-9", 
      "https://app.dimensions.ai/details/publication/pub.1106705623"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00028-018-0468-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0468-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0468-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0468-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0468-9'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00028-018-0468-9 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N8e2f64595b794d599ddd014acb9a2fc8
4 schema:citation sg:pub.10.1007/978-0-8176-4995-1
5 sg:pub.10.1007/978-1-4612-0197-7
6 sg:pub.10.1007/978-3-642-02141-1_5
7 sg:pub.10.1007/978-3-642-56478-9_34
8 sg:pub.10.1007/978-3-642-56579-3
9 sg:pub.10.1007/bf02921566
10 sg:pub.10.1007/s00020-017-2344-3
11 sg:pub.10.1007/s00440-007-0070-5
12 sg:pub.10.1007/s10959-010-0300-0
13 sg:pub.10.1007/s11118-015-9514-1
14 sg:pub.10.1007/s11425-009-0100-0
15 https://app.dimensions.ai/details/publication/pub.1015965827
16 https://doi.org/10.1016/j.physrep.2003.09.002
17 https://doi.org/10.1017/cbo9780511809781
18 https://doi.org/10.1017/cbo9781139172189
19 https://doi.org/10.1017/s1446788700039239
20 https://doi.org/10.1090/conm/398
21 https://doi.org/10.1090/s0002-9947-1976-0399479-4
22 https://doi.org/10.1090/s0002-9947-2011-05408-5
23 https://doi.org/10.1112/plms/pdw043
24 https://doi.org/10.1137/1.9780898719260
25 https://doi.org/10.1142/4955
26 https://doi.org/10.1214/10-aop611
27 https://doi.org/10.1214/aop/1176992257
28 https://doi.org/10.1214/ejp.v16-909
29 https://doi.org/10.1515/crelle.2009.005
30 https://doi.org/10.2307/2371683
31 https://doi.org/10.4310/jdg/1214427880
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description For a class of Laplace exponents, we consider the transition density of the subordinator and the heat kernel of the corresponding subordinate Brownian motion. We derive explicit approximate expressions for these objects in the form of asymptotic expansions: via the saddle point method for the subordinator’s transition density and via the Mellin transform for the subordinate heat kernel. The latter builds on ideas from index theory using zeta functions. In either case, we highlight the role played by the analyticity of the Laplace exponent for the qualitative properties of the asymptotics.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N74236179f04d4c4d9f57a7490cc083c2
39 Ne3046ed5ad7549218fe11181a3fb58de
40 sg:journal.1136368
41 schema:name Heat kernel asymptotics of the subordinator and subordinate Brownian motion
42 schema:pagination 33-70
43 schema:productId N04521c9e1d114ce692e967a0cb217512
44 N0be93ea35271423b89e7743d758c78e3
45 Ne27df941990743e687a97aa0caa6811c
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106705623
47 https://doi.org/10.1007/s00028-018-0468-9
48 schema:sdDatePublished 2019-04-11T10:32
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Na4ef560e674a48968db08abf44995056
51 schema:url https://link.springer.com/10.1007%2Fs00028-018-0468-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N04521c9e1d114ce692e967a0cb217512 schema:name dimensions_id
56 schema:value pub.1106705623
57 rdf:type schema:PropertyValue
58 N0be93ea35271423b89e7743d758c78e3 schema:name doi
59 schema:value 10.1007/s00028-018-0468-9
60 rdf:type schema:PropertyValue
61 N74236179f04d4c4d9f57a7490cc083c2 schema:issueNumber 1
62 rdf:type schema:PublicationIssue
63 N8e2f64595b794d599ddd014acb9a2fc8 rdf:first sg:person.013422372413.61
64 rdf:rest rdf:nil
65 Na4ef560e674a48968db08abf44995056 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Ne27df941990743e687a97aa0caa6811c schema:name readcube_id
68 schema:value 77e52eb6e04e8a40e708926d76c0ccc95efad342414038bb891717525a3932f8
69 rdf:type schema:PropertyValue
70 Ne3046ed5ad7549218fe11181a3fb58de schema:volumeNumber 19
71 rdf:type schema:PublicationVolume
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
76 schema:name Interdisciplinary Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1136368 schema:issn 1424-3199
79 1424-3202
80 schema:name Journal of Evolution Equations
81 rdf:type schema:Periodical
82 sg:person.013422372413.61 schema:affiliation https://www.grid.ac/institutes/grid.500539.a
83 schema:familyName Fahrenwaldt
84 schema:givenName M. A.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61
86 rdf:type schema:Person
87 sg:pub.10.1007/978-0-8176-4995-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015965827
88 https://doi.org/10.1007/978-0-8176-4995-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/978-1-4612-0197-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016069514
91 https://doi.org/10.1007/978-1-4612-0197-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/978-3-642-02141-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003543966
94 https://doi.org/10.1007/978-3-642-02141-1_5
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/978-3-642-56478-9_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085932121
97 https://doi.org/10.1007/978-3-642-56478-9_34
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/978-3-642-56579-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297087
100 https://doi.org/10.1007/978-3-642-56579-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/bf02921566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043165353
103 https://doi.org/10.1007/bf02921566
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00020-017-2344-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083537441
106 https://doi.org/10.1007/s00020-017-2344-3
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00440-007-0070-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023735319
109 https://doi.org/10.1007/s00440-007-0070-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10959-010-0300-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002113502
112 https://doi.org/10.1007/s10959-010-0300-0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11118-015-9514-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042027922
115 https://doi.org/10.1007/s11118-015-9514-1
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11425-009-0100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006877489
118 https://doi.org/10.1007/s11425-009-0100-0
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1015965827 schema:CreativeWork
121 https://doi.org/10.1016/j.physrep.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007964585
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1017/cbo9780511809781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098713390
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1017/cbo9781139172189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667111
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1017/s1446788700039239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852801
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1090/conm/398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108334960
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1090/s0002-9947-1976-0399479-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052180128
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1090/s0002-9947-2011-05408-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059335506
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1112/plms/pdw043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041935891
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/1.9780898719260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098551295
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1142/4955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098931915
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1214/10-aop611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391465
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1214/aop/1176992257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404351
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1214/ejp.v16-909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064396858
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1515/crelle.2009.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011430036
148 rdf:type schema:CreativeWork
149 https://doi.org/10.2307/2371683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898395
150 rdf:type schema:CreativeWork
151 https://doi.org/10.4310/jdg/1214427880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084458764
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.500539.a schema:alternateName Maxwell Institute for Mathematical Sciences
154 schema:name Department of Actuarial Mathematics and Statistics, Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...