The Yamabe flow on incomplete manifolds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yuanzhen Shao

ABSTRACT

This article is concerned with developing an analytic theory for second-order nonlinear parabolic equations on singular manifolds. Existence and uniqueness of solutions in an Lp-framework are established by maximal regularity tools. These techniques are applied to the Yamabe flow. It is proven that the Yamabe flow admits a unique local solution within a class of incomplete initial metrics. More... »

PAGES

1-38

References to SciGraph publications

  • 2010-08. Parameter-dependent edge operators in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 2016. Moving Interfaces and Quasilinear Parabolic Evolution Equations in NONE
  • 2010-07. Ricci flow of negatively curved incomplete surfaces in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1981-12. Transformation of boundary problems in ACTA MATHEMATICA
  • 2014-03. Continuous maximal regularity on uniformly regular Riemannian manifolds in JOURNAL OF EVOLUTION EQUATIONS
  • 2003-06. Bounded imaginary powers of differential operators on manifolds with conical singularities in MATHEMATISCHE ZEITSCHRIFT
  • 2010-10. Ricci Flow on Surfaces with Conical Singularities in THE JOURNAL OF GEOMETRIC ANALYSIS
  • 2002-10. The Edge Algebra Structure of Boundary Value Problems in ANNALS OF GLOBAL ANALYSIS AND GEOMETRY
  • 2001. Pseudodifferential Analysis on Manifolds with Boundary — a Comparison of b-Calculus and Cone Algebra in APPROACHES TO SINGULAR ANALYSIS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00028-018-0453-3

    DOI

    http://dx.doi.org/10.1007/s00028-018-0453-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104286745


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Georgia Southern University", 
              "id": "https://www.grid.ac/institutes/grid.256302.0", 
              "name": [
                "Department of Mathematical Sciences, Georgia Southern University, Room 3041, 65 Georgia Ave., 30460, Statesboro, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shao", 
            "givenName": "Yuanzhen", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.bulsci.2012.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004948171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605302.2011.558555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005247772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jde.2014.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006466762"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12220-010-9136-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014961966", 
              "https://doi.org/10.1007/s12220-010-9136-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12220-010-9136-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014961966", 
              "https://doi.org/10.1007/s12220-010-9136-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605302.2016.1219745", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015429881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10455-010-9207-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016751220", 
              "https://doi.org/10.1007/s10455-010-9207-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10455-010-9207-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016751220", 
              "https://doi.org/10.1007/s10455-010-9207-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.201300188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019043096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jde.2015.09.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022603507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8253-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023704181", 
              "https://doi.org/10.1007/978-3-0348-8253-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8253-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023704181", 
              "https://doi.org/10.1007/978-3-0348-8253-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019939316595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023843468", 
              "https://doi.org/10.1023/a:1019939316595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.201400354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024907977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crelle.2011.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025312394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605302.2012.736913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031012951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0495-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031232349", 
              "https://doi.org/10.1007/s00209-003-0495-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.201100157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031385859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00028-014-0218-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031867569", 
              "https://doi.org/10.1007/s00028-014-0218-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.201200210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033598734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1034651447", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-27698-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034651447", 
              "https://doi.org/10.1007/978-3-319-27698-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-009-0290-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035485533", 
              "https://doi.org/10.1007/s00526-009-0290-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-009-0290-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035485533", 
              "https://doi.org/10.1007/s00526-009-0290-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-009-0290-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035485533", 
              "https://doi.org/10.1007/s00526-009-0290-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036128056", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1036128056", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036688450", 
              "https://doi.org/10.1007/bf02392873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2012.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048781255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s1474748005000198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054938145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/memo/0788", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059343837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1512/iumj.2014.63.5435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067514303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/apde.2015.8.839", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069059611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/gt.2015.19.1477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069060629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3934/eect.2016006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071738436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/jems/237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072317823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/ajm.2002.v6.n4.a2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456385"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "This article is concerned with developing an analytic theory for second-order nonlinear parabolic equations on singular manifolds. Existence and uniqueness of solutions in an Lp-framework are established by maximal regularity tools. These techniques are applied to the Yamabe flow. It is proven that the Yamabe flow admits a unique local solution within a class of incomplete initial metrics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00028-018-0453-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136368", 
            "issn": [
              "1424-3199", 
              "1424-3202"
            ], 
            "name": "Journal of Evolution Equations", 
            "type": "Periodical"
          }
        ], 
        "name": "The Yamabe flow on incomplete manifolds", 
        "pagination": "1-38", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "668822b4d28e118e927446dc035ee23963fb62d79caa996e620569feb6406392"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00028-018-0453-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104286745"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00028-018-0453-3", 
          "https://app.dimensions.ai/details/publication/pub.1104286745"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00028-018-0453-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0453-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0453-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0453-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-018-0453-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    154 TRIPLES      21 PREDICATES      56 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00028-018-0453-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N234f53ae82424d90a3fe9be6260f3f41
    4 schema:citation sg:pub.10.1007/978-3-0348-8253-8_5
    5 sg:pub.10.1007/978-3-319-27698-4
    6 sg:pub.10.1007/bf02392873
    7 sg:pub.10.1007/s00028-014-0218-6
    8 sg:pub.10.1007/s00209-003-0495-1
    9 sg:pub.10.1007/s00526-009-0290-x
    10 sg:pub.10.1007/s10455-010-9207-3
    11 sg:pub.10.1007/s12220-010-9136-1
    12 sg:pub.10.1023/a:1019939316595
    13 https://app.dimensions.ai/details/publication/pub.1034651447
    14 https://app.dimensions.ai/details/publication/pub.1036128056
    15 https://doi.org/10.1002/mana.201100157
    16 https://doi.org/10.1002/mana.201200210
    17 https://doi.org/10.1002/mana.201300188
    18 https://doi.org/10.1002/mana.201400354
    19 https://doi.org/10.1016/j.aim.2012.05.008
    20 https://doi.org/10.1016/j.bulsci.2012.06.004
    21 https://doi.org/10.1016/j.jde.2014.04.004
    22 https://doi.org/10.1016/j.jde.2015.09.053
    23 https://doi.org/10.1017/s1474748005000198
    24 https://doi.org/10.1080/03605302.2011.558555
    25 https://doi.org/10.1080/03605302.2012.736913
    26 https://doi.org/10.1080/03605302.2016.1219745
    27 https://doi.org/10.1090/memo/0788
    28 https://doi.org/10.1512/iumj.2014.63.5435
    29 https://doi.org/10.1515/crelle.2011.186
    30 https://doi.org/10.2140/apde.2015.8.839
    31 https://doi.org/10.2140/gt.2015.19.1477
    32 https://doi.org/10.3934/eect.2016006
    33 https://doi.org/10.4171/jems/237
    34 https://doi.org/10.4310/ajm.2002.v6.n4.a2
    35 schema:datePublished 2018-12
    36 schema:datePublishedReg 2018-12-01
    37 schema:description This article is concerned with developing an analytic theory for second-order nonlinear parabolic equations on singular manifolds. Existence and uniqueness of solutions in an Lp-framework are established by maximal regularity tools. These techniques are applied to the Yamabe flow. It is proven that the Yamabe flow admits a unique local solution within a class of incomplete initial metrics.
    38 schema:genre research_article
    39 schema:inLanguage en
    40 schema:isAccessibleForFree true
    41 schema:isPartOf sg:journal.1136368
    42 schema:name The Yamabe flow on incomplete manifolds
    43 schema:pagination 1-38
    44 schema:productId N28a1ef3bc96e43ffae0e005f8e910f1d
    45 Ndbfbc07665084e7395706f4392884746
    46 Nfb430a3b68584f988ef8530bf39234ee
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104286745
    48 https://doi.org/10.1007/s00028-018-0453-3
    49 schema:sdDatePublished 2019-04-10T19:53
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N78ad8bc2eda34d49957d8d5b3aa19957
    52 schema:url http://link.springer.com/10.1007/s00028-018-0453-3
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N234f53ae82424d90a3fe9be6260f3f41 rdf:first Nb56d58ec44e7431faf4f1ef84ba19027
    57 rdf:rest rdf:nil
    58 N28a1ef3bc96e43ffae0e005f8e910f1d schema:name dimensions_id
    59 schema:value pub.1104286745
    60 rdf:type schema:PropertyValue
    61 N78ad8bc2eda34d49957d8d5b3aa19957 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Nb56d58ec44e7431faf4f1ef84ba19027 schema:affiliation https://www.grid.ac/institutes/grid.256302.0
    64 schema:familyName Shao
    65 schema:givenName Yuanzhen
    66 rdf:type schema:Person
    67 Ndbfbc07665084e7395706f4392884746 schema:name readcube_id
    68 schema:value 668822b4d28e118e927446dc035ee23963fb62d79caa996e620569feb6406392
    69 rdf:type schema:PropertyValue
    70 Nfb430a3b68584f988ef8530bf39234ee schema:name doi
    71 schema:value 10.1007/s00028-018-0453-3
    72 rdf:type schema:PropertyValue
    73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Mathematical Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Pure Mathematics
    78 rdf:type schema:DefinedTerm
    79 sg:journal.1136368 schema:issn 1424-3199
    80 1424-3202
    81 schema:name Journal of Evolution Equations
    82 rdf:type schema:Periodical
    83 sg:pub.10.1007/978-3-0348-8253-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023704181
    84 https://doi.org/10.1007/978-3-0348-8253-8_5
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/978-3-319-27698-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034651447
    87 https://doi.org/10.1007/978-3-319-27698-4
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf02392873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036688450
    90 https://doi.org/10.1007/bf02392873
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s00028-014-0218-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031867569
    93 https://doi.org/10.1007/s00028-014-0218-6
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s00209-003-0495-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031232349
    96 https://doi.org/10.1007/s00209-003-0495-1
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s00526-009-0290-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035485533
    99 https://doi.org/10.1007/s00526-009-0290-x
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1007/s10455-010-9207-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016751220
    102 https://doi.org/10.1007/s10455-010-9207-3
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1007/s12220-010-9136-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014961966
    105 https://doi.org/10.1007/s12220-010-9136-1
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1023/a:1019939316595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023843468
    108 https://doi.org/10.1023/a:1019939316595
    109 rdf:type schema:CreativeWork
    110 https://app.dimensions.ai/details/publication/pub.1034651447 schema:CreativeWork
    111 https://app.dimensions.ai/details/publication/pub.1036128056 schema:CreativeWork
    112 https://doi.org/10.1002/mana.201100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031385859
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1002/mana.201200210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033598734
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1002/mana.201300188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019043096
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1002/mana.201400354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024907977
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.aim.2012.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048781255
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.bulsci.2012.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004948171
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.jde.2014.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006466762
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jde.2015.09.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022603507
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1017/s1474748005000198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054938145
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1080/03605302.2011.558555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005247772
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1080/03605302.2012.736913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031012951
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1080/03605302.2016.1219745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429881
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1090/memo/0788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343837
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1512/iumj.2014.63.5435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067514303
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1515/crelle.2011.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025312394
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.2140/apde.2015.8.839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059611
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.2140/gt.2015.19.1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069060629
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.3934/eect.2016006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071738436
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.4171/jems/237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317823
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.4310/ajm.2002.v6.n4.a2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456385
    151 rdf:type schema:CreativeWork
    152 https://www.grid.ac/institutes/grid.256302.0 schema:alternateName Georgia Southern University
    153 schema:name Department of Mathematical Sciences, Georgia Southern University, Room 3041, 65 Georgia Ave., 30460, Statesboro, GA, USA
    154 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...