Time evolution for a model of epidermis growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03-24

AUTHORS

Alberto Gandolfi, Mimmo Iannelli, Gabriela Marinoschi

ABSTRACT

In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et al. in J Math Biol 62(1):111–141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells. More... »

PAGES

509-533

References to SciGraph publications

  • 2007-02-21. Pathogenesis and therapy of psoriasis in NATURE
  • 2002-11. The steady state of a tumor cord cell population in JOURNAL OF EVOLUTION EQUATIONS
  • 2008. Population Models Structured by Age, Size, and Spatial Position in STRUCTURED POPULATION MODELS IN BIOLOGY AND EPIDEMIOLOGY
  • 2010-02-23. An age-structured model of epidermis growth in JOURNAL OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0

    DOI

    http://dx.doi.org/10.1007/s00028-013-0188-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042143275


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419461.f", 
              "name": [
                "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandolfi", 
            "givenName": "Alberto", 
            "id": "sg:person.0623363352.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy", 
              "id": "http://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iannelli", 
            "givenName": "Mimmo", 
            "id": "sg:person.0674740605.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania", 
                "Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marinoschi", 
            "givenName": "Gabriela", 
            "id": "sg:person.016167643555.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00012598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024635419", 
              "https://doi.org/10.1007/pl00012598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-010-0330-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005239728", 
              "https://doi.org/10.1007/s00285-010-0330-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034746284", 
              "https://doi.org/10.1038/nature05663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78273-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024802622", 
              "https://doi.org/10.1007/978-3-540-78273-5_1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03-24", 
        "datePublishedReg": "2013-03-24", 
        "description": "In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et\u00a0al. in J Math Biol 62(1):111\u2013141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00028-013-0188-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136368", 
            "issn": [
              "1424-3199", 
              "1424-3202"
            ], 
            "name": "Journal of Evolution Equations", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "nonlinear hyperbolic equations", 
          "nonlocal boundary conditions", 
          "hyperbolic equations", 
          "evolution problem", 
          "free boundary", 
          "time evolution", 
          "boundary conditions", 
          "suitable estimates", 
          "point procedure", 
          "previous paper", 
          "steady state", 
          "present paper", 
          "theorem", 
          "equations", 
          "existence", 
          "uniqueness", 
          "model", 
          "modeling", 
          "problem", 
          "solution", 
          "proof", 
          "estimates", 
          "description", 
          "boundaries", 
          "different types", 
          "conditions", 
          "system", 
          "order", 
          "curves", 
          "state", 
          "structure", 
          "evolution", 
          "procedure", 
          "integration", 
          "surface", 
          "types", 
          "characteristic curve", 
          "external surface", 
          "growth", 
          "aim", 
          "aggregates", 
          "cells", 
          "paper", 
          "epidermis", 
          "epidermis growth"
        ], 
        "name": "Time evolution for a model of epidermis growth", 
        "pagination": "509-533", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042143275"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00028-013-0188-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00028-013-0188-0", 
          "https://app.dimensions.ai/details/publication/pub.1042143275"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_586.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00028-013-0188-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      22 PREDICATES      75 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00028-013-0188-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author Nf8d08313a8a244bdb542c9c2a8ea7006
    5 schema:citation sg:pub.10.1007/978-3-540-78273-5_1
    6 sg:pub.10.1007/pl00012598
    7 sg:pub.10.1007/s00285-010-0330-3
    8 sg:pub.10.1038/nature05663
    9 schema:datePublished 2013-03-24
    10 schema:datePublishedReg 2013-03-24
    11 schema:description In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et al. in J Math Biol 62(1):111–141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N72a5e3e641614bd6ae70db2e205e33cd
    16 Nbe554954fe424f99ba417990456d036b
    17 sg:journal.1136368
    18 schema:keywords aggregates
    19 aim
    20 boundaries
    21 boundary conditions
    22 cells
    23 characteristic curve
    24 conditions
    25 curves
    26 description
    27 different types
    28 epidermis
    29 epidermis growth
    30 equations
    31 estimates
    32 evolution
    33 evolution problem
    34 existence
    35 external surface
    36 free boundary
    37 growth
    38 hyperbolic equations
    39 integration
    40 model
    41 modeling
    42 nonlinear hyperbolic equations
    43 nonlocal boundary conditions
    44 order
    45 paper
    46 point procedure
    47 present paper
    48 previous paper
    49 problem
    50 procedure
    51 proof
    52 solution
    53 state
    54 steady state
    55 structure
    56 suitable estimates
    57 surface
    58 system
    59 theorem
    60 time evolution
    61 types
    62 uniqueness
    63 schema:name Time evolution for a model of epidermis growth
    64 schema:pagination 509-533
    65 schema:productId Nb78c4afd14df4c54945e39ff9cae0532
    66 Nbb88e9de2ec5478a9d91cf61506b12e5
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143275
    68 https://doi.org/10.1007/s00028-013-0188-0
    69 schema:sdDatePublished 2022-05-10T10:08
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N1299075197854c9485b695816910b4e6
    72 schema:url https://doi.org/10.1007/s00028-013-0188-0
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N015bf6335d2a462882bea5ca65265bee rdf:first sg:person.016167643555.25
    77 rdf:rest rdf:nil
    78 N1299075197854c9485b695816910b4e6 schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 N6ba73654770b4030b2058f6ddddcb79e rdf:first sg:person.0674740605.03
    81 rdf:rest N015bf6335d2a462882bea5ca65265bee
    82 N72a5e3e641614bd6ae70db2e205e33cd schema:issueNumber 3
    83 rdf:type schema:PublicationIssue
    84 Nb78c4afd14df4c54945e39ff9cae0532 schema:name dimensions_id
    85 schema:value pub.1042143275
    86 rdf:type schema:PropertyValue
    87 Nbb88e9de2ec5478a9d91cf61506b12e5 schema:name doi
    88 schema:value 10.1007/s00028-013-0188-0
    89 rdf:type schema:PropertyValue
    90 Nbe554954fe424f99ba417990456d036b schema:volumeNumber 13
    91 rdf:type schema:PublicationVolume
    92 Nf8d08313a8a244bdb542c9c2a8ea7006 rdf:first sg:person.0623363352.52
    93 rdf:rest N6ba73654770b4030b2058f6ddddcb79e
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Pure Mathematics
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Applied Mathematics
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1136368 schema:issn 1424-3199
    104 1424-3202
    105 schema:name Journal of Evolution Equations
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.016167643555.25 schema:affiliation grid-institutes:grid.418333.e
    109 schema:familyName Marinoschi
    110 schema:givenName Gabriela
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25
    112 rdf:type schema:Person
    113 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.419461.f
    114 schema:familyName Gandolfi
    115 schema:givenName Alberto
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
    117 rdf:type schema:Person
    118 sg:person.0674740605.03 schema:affiliation grid-institutes:grid.11696.39
    119 schema:familyName Iannelli
    120 schema:givenName Mimmo
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03
    122 rdf:type schema:Person
    123 sg:pub.10.1007/978-3-540-78273-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024802622
    124 https://doi.org/10.1007/978-3-540-78273-5_1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/pl00012598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024635419
    127 https://doi.org/10.1007/pl00012598
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s00285-010-0330-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005239728
    130 https://doi.org/10.1007/s00285-010-0330-3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/nature05663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034746284
    133 https://doi.org/10.1038/nature05663
    134 rdf:type schema:CreativeWork
    135 grid-institutes:grid.11696.39 schema:alternateName Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy
    136 schema:name Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy
    137 rdf:type schema:Organization
    138 grid-institutes:grid.418333.e schema:alternateName Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania
    139 schema:name Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania
    140 Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania
    141 rdf:type schema:Organization
    142 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
    143 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...