Time evolution for a model of epidermis growth View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-03-24

AUTHORS

Alberto Gandolfi, Mimmo Iannelli, Gabriela Marinoschi

ABSTRACT

In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et al. in J Math Biol 62(1):111–141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells. More... »

PAGES

509-533

References to SciGraph publications

  • 2007-02-21. Pathogenesis and therapy of psoriasis in NATURE
  • 2002-11. The steady state of a tumor cord cell population in JOURNAL OF EVOLUTION EQUATIONS
  • 2008. Population Models Structured by Age, Size, and Spatial Position in STRUCTURED POPULATION MODELS IN BIOLOGY AND EPIDEMIOLOGY
  • 2010-02-23. An age-structured model of epidermis growth in JOURNAL OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0

    DOI

    http://dx.doi.org/10.1007/s00028-013-0188-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042143275


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy", 
              "id": "http://www.grid.ac/institutes/grid.419461.f", 
              "name": [
                "Istituto di Analisi dei Sistemi ed Informatica \u201cA. Ruberti\u201d - CNR, Viale Manzoni 30, 00185, Roma, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gandolfi", 
            "givenName": "Alberto", 
            "id": "sg:person.0623363352.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy", 
              "id": "http://www.grid.ac/institutes/grid.11696.39", 
              "name": [
                "Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iannelli", 
            "givenName": "Mimmo", 
            "id": "sg:person.0674740605.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania", 
              "id": "http://www.grid.ac/institutes/grid.418333.e", 
              "name": [
                "Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania", 
                "Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marinoschi", 
            "givenName": "Gabriela", 
            "id": "sg:person.016167643555.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature05663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034746284", 
              "https://doi.org/10.1038/nature05663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00012598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024635419", 
              "https://doi.org/10.1007/pl00012598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78273-5_1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024802622", 
              "https://doi.org/10.1007/978-3-540-78273-5_1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00285-010-0330-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005239728", 
              "https://doi.org/10.1007/s00285-010-0330-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03-24", 
        "datePublishedReg": "2013-03-24", 
        "description": "In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et\u00a0al. in J Math Biol 62(1):111\u2013141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00028-013-0188-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136368", 
            "issn": [
              "1424-3199", 
              "1424-3202"
            ], 
            "name": "Journal of Evolution Equations", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "keywords": [
          "nonlinear hyperbolic equations", 
          "hyperbolic equations", 
          "nonlocal boundary conditions", 
          "boundary conditions", 
          "free boundary", 
          "evolution problem", 
          "external surface", 
          "equations", 
          "conditions", 
          "boundaries", 
          "modeling", 
          "model", 
          "previous paper", 
          "existence", 
          "steady state", 
          "present paper", 
          "uniqueness", 
          "solution", 
          "surface", 
          "theorem", 
          "suitable estimates", 
          "point procedure", 
          "structure", 
          "aggregates", 
          "different types", 
          "time evolution", 
          "system", 
          "growth", 
          "state", 
          "problem", 
          "proof", 
          "integration", 
          "characteristic curve", 
          "curves", 
          "order", 
          "estimates", 
          "procedure", 
          "description", 
          "types", 
          "cells", 
          "evolution", 
          "paper", 
          "epidermis", 
          "aim", 
          "epidermis growth", 
          "modellistic aim"
        ], 
        "name": "Time evolution for a model of epidermis growth", 
        "pagination": "509-533", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042143275"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00028-013-0188-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00028-013-0188-0", 
          "https://app.dimensions.ai/details/publication/pub.1042143275"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_595.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00028-013-0188-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-013-0188-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      76 URIs      63 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00028-013-0188-0 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 anzsrc-for:0102
    4 schema:author N3eab51248dcc4883b815e2b0735b0eaa
    5 schema:citation sg:pub.10.1007/978-3-540-78273-5_1
    6 sg:pub.10.1007/pl00012598
    7 sg:pub.10.1007/s00285-010-0330-3
    8 sg:pub.10.1038/nature05663
    9 schema:datePublished 2013-03-24
    10 schema:datePublishedReg 2013-03-24
    11 schema:description In this paper, we study a system of nonlinear hyperbolic equations, with nonlocal boundary conditions and a free boundary, arising in the modeling of epidermis growth. The model was introduced in a previous paper (Gandolfi et al. in J Math Biol 62(1):111–141, 2010) where conditions for the existence of a steady state were investigated. The present paper is devoted to prove existence and uniqueness of a solution to the evolution problem and of the related moving boundary representing the external surface of the epidermis. The proof of the theorem is based on the integration along characteristic curves in order to obtain suitable estimates allowing to set up a fixed point procedure. The modellistic aim of the paper is a description of the structure of the epidermis as a layered aggregate of different type of cells.
    12 schema:genre article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N6ffb6c68ad4e4cb4b432517455c9a76a
    16 Ne1f839f42ba942c39085b91351269fe2
    17 sg:journal.1136368
    18 schema:keywords aggregates
    19 aim
    20 boundaries
    21 boundary conditions
    22 cells
    23 characteristic curve
    24 conditions
    25 curves
    26 description
    27 different types
    28 epidermis
    29 epidermis growth
    30 equations
    31 estimates
    32 evolution
    33 evolution problem
    34 existence
    35 external surface
    36 free boundary
    37 growth
    38 hyperbolic equations
    39 integration
    40 model
    41 modeling
    42 modellistic aim
    43 nonlinear hyperbolic equations
    44 nonlocal boundary conditions
    45 order
    46 paper
    47 point procedure
    48 present paper
    49 previous paper
    50 problem
    51 procedure
    52 proof
    53 solution
    54 state
    55 steady state
    56 structure
    57 suitable estimates
    58 surface
    59 system
    60 theorem
    61 time evolution
    62 types
    63 uniqueness
    64 schema:name Time evolution for a model of epidermis growth
    65 schema:pagination 509-533
    66 schema:productId N3153bba75fdb47b69aaa94408cd467f6
    67 Nb7cc48a9eb6b4ff78b46cbb0dbf4e0a0
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143275
    69 https://doi.org/10.1007/s00028-013-0188-0
    70 schema:sdDatePublished 2022-01-01T18:29
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Nd1ae0b037af74fb486aa2b9f65d3b9ab
    73 schema:url https://doi.org/10.1007/s00028-013-0188-0
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N1e9ebef1030648e2961a73782c1c3a92 rdf:first sg:person.016167643555.25
    78 rdf:rest rdf:nil
    79 N3153bba75fdb47b69aaa94408cd467f6 schema:name dimensions_id
    80 schema:value pub.1042143275
    81 rdf:type schema:PropertyValue
    82 N3eab51248dcc4883b815e2b0735b0eaa rdf:first sg:person.0623363352.52
    83 rdf:rest N693f6e21b99c42b7b47f4a109fe1c429
    84 N693f6e21b99c42b7b47f4a109fe1c429 rdf:first sg:person.0674740605.03
    85 rdf:rest N1e9ebef1030648e2961a73782c1c3a92
    86 N6ffb6c68ad4e4cb4b432517455c9a76a schema:issueNumber 3
    87 rdf:type schema:PublicationIssue
    88 Nb7cc48a9eb6b4ff78b46cbb0dbf4e0a0 schema:name doi
    89 schema:value 10.1007/s00028-013-0188-0
    90 rdf:type schema:PropertyValue
    91 Nd1ae0b037af74fb486aa2b9f65d3b9ab schema:name Springer Nature - SN SciGraph project
    92 rdf:type schema:Organization
    93 Ne1f839f42ba942c39085b91351269fe2 schema:volumeNumber 13
    94 rdf:type schema:PublicationVolume
    95 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Mathematical Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Pure Mathematics
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Applied Mathematics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1136368 schema:issn 1424-3199
    105 1424-3202
    106 schema:name Journal of Evolution Equations
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.016167643555.25 schema:affiliation grid-institutes:grid.418333.e
    110 schema:familyName Marinoschi
    111 schema:givenName Gabriela
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016167643555.25
    113 rdf:type schema:Person
    114 sg:person.0623363352.52 schema:affiliation grid-institutes:grid.419461.f
    115 schema:familyName Gandolfi
    116 schema:givenName Alberto
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623363352.52
    118 rdf:type schema:Person
    119 sg:person.0674740605.03 schema:affiliation grid-institutes:grid.11696.39
    120 schema:familyName Iannelli
    121 schema:givenName Mimmo
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674740605.03
    123 rdf:type schema:Person
    124 sg:pub.10.1007/978-3-540-78273-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024802622
    125 https://doi.org/10.1007/978-3-540-78273-5_1
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/pl00012598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024635419
    128 https://doi.org/10.1007/pl00012598
    129 rdf:type schema:CreativeWork
    130 sg:pub.10.1007/s00285-010-0330-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005239728
    131 https://doi.org/10.1007/s00285-010-0330-3
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1038/nature05663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034746284
    134 https://doi.org/10.1038/nature05663
    135 rdf:type schema:CreativeWork
    136 grid-institutes:grid.11696.39 schema:alternateName Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy
    137 schema:name Mathematics Department, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy
    138 rdf:type schema:Organization
    139 grid-institutes:grid.418333.e schema:alternateName Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania
    140 schema:name Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania
    141 Simion Stoilow Institute of Mathematics, Romanian Academy, Research group of the project PCCE-55/2008, Calea Grivitei 21, Bucharest, Romania
    142 rdf:type schema:Organization
    143 grid-institutes:grid.419461.f schema:alternateName Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
    144 schema:name Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti” - CNR, Viale Manzoni 30, 00185, Roma, Italy
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...