Infinite-dimensional porous media equations and optimal transportation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-03

AUTHORS

Luigi Ambrosio, Edoardo Mainini

ABSTRACT

In this paper, we study a class of nonlinear diffusion equations in a Hilbert space X, with respect to a log-concave reference probability measure γ. We obtain existence, uniqueness and stability properties, in the framework of gradient flows in spaces of probability measures.

PAGES

217-246

References to SciGraph publications

  • 1999-08. Entropy Solutions for Nonlinear Degenerate Problems in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2000-01. Dynamical Systems in the Variational Formulation of the Fokker—Planck Equation by the Wasserstein Metric in APPLIED MATHEMATICS & OPTIMIZATION
  • 1998-03. Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2004-04. Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2010-03. Wasserstein space over the Wiener space in PROBABILITY THEORY AND RELATED FIELDS
  • Journal

    TITLE

    Journal of Evolution Equations

    ISSUE

    1

    VOLUME

    10

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1

    DOI

    http://dx.doi.org/10.1007/s00028-009-0047-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020588643


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore di Pisa", 
              "id": "https://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "Scuola Normale Superiore, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ambrosio", 
            "givenName": "Luigi", 
            "id": "sg:person.012621721115.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Scuola Normale Superiore di Pisa", 
              "id": "https://www.grid.ac/institutes/grid.6093.c", 
              "name": [
                "Scuola Normale Superiore, Pisa, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mainini", 
            "givenName": "Edoardo", 
            "id": "sg:person.01121012000.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012000.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002050050073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003905054", 
              "https://doi.org/10.1007/s002050050073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1081/pde-100002243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007314090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03605308408820337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019374961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00205-003-0296-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020849615", 
              "https://doi.org/10.1007/s00205-003-0296-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002450010008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023290965", 
              "https://doi.org/10.1007/s002450010008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023528151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/aima.1997.1634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025395081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-009-0199-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025416088", 
              "https://doi.org/10.1007/s00440-009-0199-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-009-0199-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025416088", 
              "https://doi.org/10.1007/s00440-009-0199-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00440-009-0199-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025416088", 
              "https://doi.org/10.1007/s00440-009-0199-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002050050152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032781029", 
              "https://doi.org/10.1007/s002050050152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0036141096303359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062876406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4007/annals.2003.157.807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071866778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511543210", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098787202"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-03", 
        "datePublishedReg": "2010-03-01", 
        "description": "In this paper, we study a class of nonlinear diffusion equations in a Hilbert space X, with respect to a log-concave reference probability measure \u03b3. We obtain existence, uniqueness and stability properties, in the framework of gradient flows in spaces of probability measures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00028-009-0047-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136368", 
            "issn": [
              "1424-3199", 
              "1424-3202"
            ], 
            "name": "Journal of Evolution Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "Infinite-dimensional porous media equations and optimal transportation", 
        "pagination": "217-246", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "621a14baec3729e55bb621afef248dd5c37d2116e6739c68b2659e37b1ced927"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00028-009-0047-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020588643"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00028-009-0047-1", 
          "https://app.dimensions.ai/details/publication/pub.1020588643"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00028-009-0047-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      20 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00028-009-0047-1 schema:author Nfd543553e00b4198b7fcfa5958a4575e
    2 schema:citation sg:pub.10.1007/s00205-003-0296-z
    3 sg:pub.10.1007/s002050050073
    4 sg:pub.10.1007/s002050050152
    5 sg:pub.10.1007/s002450010008
    6 sg:pub.10.1007/s00440-009-0199-5
    7 https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t
    8 https://doi.org/10.1006/aima.1997.1634
    9 https://doi.org/10.1017/cbo9780511543210
    10 https://doi.org/10.1080/03605308408820337
    11 https://doi.org/10.1081/pde-100002243
    12 https://doi.org/10.1137/s0036141096303359
    13 https://doi.org/10.4007/annals.2003.157.807
    14 schema:datePublished 2010-03
    15 schema:datePublishedReg 2010-03-01
    16 schema:description In this paper, we study a class of nonlinear diffusion equations in a Hilbert space X, with respect to a log-concave reference probability measure γ. We obtain existence, uniqueness and stability properties, in the framework of gradient flows in spaces of probability measures.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N15316ede63784e778acf35cee49e1735
    21 Nd51b8f5f518b416083fb9d5f4103a706
    22 sg:journal.1136368
    23 schema:name Infinite-dimensional porous media equations and optimal transportation
    24 schema:pagination 217-246
    25 schema:productId N213949e4ac0e47e7aa1e9dec73158de0
    26 N80dbba9f8dff4b59b5891e8c84165ffe
    27 Nc8fc23804c714c9c9b5489981bfc783d
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020588643
    29 https://doi.org/10.1007/s00028-009-0047-1
    30 schema:sdDatePublished 2019-04-11T14:27
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher Ncc276bae7c9240569dc8a8dce6965877
    33 schema:url http://link.springer.com/10.1007%2Fs00028-009-0047-1
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N15316ede63784e778acf35cee49e1735 schema:volumeNumber 10
    38 rdf:type schema:PublicationVolume
    39 N213949e4ac0e47e7aa1e9dec73158de0 schema:name dimensions_id
    40 schema:value pub.1020588643
    41 rdf:type schema:PropertyValue
    42 N80dbba9f8dff4b59b5891e8c84165ffe schema:name readcube_id
    43 schema:value 621a14baec3729e55bb621afef248dd5c37d2116e6739c68b2659e37b1ced927
    44 rdf:type schema:PropertyValue
    45 Na59f1e5ede16437cb144767b39540da9 rdf:first sg:person.01121012000.49
    46 rdf:rest rdf:nil
    47 Nc8fc23804c714c9c9b5489981bfc783d schema:name doi
    48 schema:value 10.1007/s00028-009-0047-1
    49 rdf:type schema:PropertyValue
    50 Ncc276bae7c9240569dc8a8dce6965877 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nd51b8f5f518b416083fb9d5f4103a706 schema:issueNumber 1
    53 rdf:type schema:PublicationIssue
    54 Nfd543553e00b4198b7fcfa5958a4575e rdf:first sg:person.012621721115.68
    55 rdf:rest Na59f1e5ede16437cb144767b39540da9
    56 sg:journal.1136368 schema:issn 1424-3199
    57 1424-3202
    58 schema:name Journal of Evolution Equations
    59 rdf:type schema:Periodical
    60 sg:person.01121012000.49 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
    61 schema:familyName Mainini
    62 schema:givenName Edoardo
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012000.49
    64 rdf:type schema:Person
    65 sg:person.012621721115.68 schema:affiliation https://www.grid.ac/institutes/grid.6093.c
    66 schema:familyName Ambrosio
    67 schema:givenName Luigi
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68
    69 rdf:type schema:Person
    70 sg:pub.10.1007/s00205-003-0296-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020849615
    71 https://doi.org/10.1007/s00205-003-0296-z
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/s002050050073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003905054
    74 https://doi.org/10.1007/s002050050073
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/s002050050152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032781029
    77 https://doi.org/10.1007/s002050050152
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/s002450010008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023290965
    80 https://doi.org/10.1007/s002450010008
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/s00440-009-0199-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025416088
    83 https://doi.org/10.1007/s00440-009-0199-5
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1023528151
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1006/aima.1997.1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025395081
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1017/cbo9780511543210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787202
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1080/03605308408820337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019374961
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1081/pde-100002243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007314090
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1137/s0036141096303359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062876406
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.4007/annals.2003.157.807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866778
    98 rdf:type schema:CreativeWork
    99 https://www.grid.ac/institutes/grid.6093.c schema:alternateName Scuola Normale Superiore di Pisa
    100 schema:name Scuola Normale Superiore, Pisa, Italy
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...