Ontology type: schema:ScholarlyArticle Open Access: True
2010-03
AUTHORSLuigi Ambrosio, Edoardo Mainini
ABSTRACTIn this paper, we study a class of nonlinear diffusion equations in a Hilbert space X, with respect to a log-concave reference probability measure γ. We obtain existence, uniqueness and stability properties, in the framework of gradient flows in spaces of probability measures.
PAGES217-246
http://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1
DOIhttp://dx.doi.org/10.1007/s00028-009-0047-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020588643
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Ambrosio",
"givenName": "Luigi",
"id": "sg:person.012621721115.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621721115.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Scuola Normale Superiore di Pisa",
"id": "https://www.grid.ac/institutes/grid.6093.c",
"name": [
"Scuola Normale Superiore, Pisa, Italy"
],
"type": "Organization"
},
"familyName": "Mainini",
"givenName": "Edoardo",
"id": "sg:person.01121012000.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121012000.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s002050050073",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003905054",
"https://doi.org/10.1007/s002050050073"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1081/pde-100002243",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007314090"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605308408820337",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019374961"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00205-003-0296-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020849615",
"https://doi.org/10.1007/s00205-003-0296-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002450010008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023290965",
"https://doi.org/10.1007/s002450010008"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1097-0312(199907)52:7<873::aid-cpa5>3.0.co;2-t",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023528151"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/aima.1997.1634",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025395081"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00440-009-0199-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025416088",
"https://doi.org/10.1007/s00440-009-0199-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002050050152",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032781029",
"https://doi.org/10.1007/s002050050152"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036141096303359",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062876406"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4007/annals.2003.157.807",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071866778"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/cbo9780511543210",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098787202"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-03",
"datePublishedReg": "2010-03-01",
"description": "In this paper, we study a class of nonlinear diffusion equations in a Hilbert space X, with respect to a log-concave reference probability measure \u03b3. We obtain existence, uniqueness and stability properties, in the framework of gradient flows in spaces of probability measures.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-009-0047-1",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"name": "Infinite-dimensional porous media equations and optimal transportation",
"pagination": "217-246",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"621a14baec3729e55bb621afef248dd5c37d2116e6739c68b2659e37b1ced927"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-009-0047-1"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020588643"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-009-0047-1",
"https://app.dimensions.ai/details/publication/pub.1020588643"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T14:27",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13073_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00028-009-0047-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-009-0047-1'
This table displays all metadata directly associated to this object as RDF triples.
101 TRIPLES
20 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES