Ontology type: schema:ScholarlyArticle
2006-05
AUTHORSF. Alabau-Boussouira, P. Cannarsa, G. Fragnelli
ABSTRACTWe prove an estimate of Carleman type for the one dimensional heat equation $$ u_t - \left( {a\left( x \right)u_x } \right)_x + c\left( {t,x} \right)u = h\left( {t,x} \right),\quad \left( {t,x} \right) \in \left( {0,T} \right) \times \left( {0,1} \right), $$ where a(·) is degenerate at 0. Such an estimate is derived for a special pseudo-convex weight function related to the degeneracy rate of a(·). Then, we study the null controllability on [0, 1] of the semilinear degenerate parabolic equation $$ u_t - \left( {a\left( x \right)u_x } \right)_x + f\left( {t,x,u} \right) = h\left( {t,x} \right)\chi _\omega \left( x \right), $$ where (t, x) ∈(0, T) × (0, 1), ω=(α, β) ⊂⊂ [0, 1], and f is locally Lipschitz with respect to u. More... »
PAGES161-204
http://scigraph.springernature.com/pub.10.1007/s00028-006-0222-6
DOIhttp://dx.doi.org/10.1007/s00028-006-0222-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013053088
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Public Health and Health Services",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Lorraine",
"id": "https://www.grid.ac/institutes/grid.29172.3f",
"name": [
"L.M.A.M., CNRS-UMR 7122, Universit\u00e9 de Metz, Ile du Saulcy, 57045, Metz cedex 01, France"
],
"type": "Organization"
},
"familyName": "Alabau-Boussouira",
"givenName": "F.",
"id": "sg:person.016007050671.20",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016007050671.20"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e1 di Roma \u201cTor Vergata\u201d, Via della Ricerca Scientifica, 00133, Roma, Italy"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "P.",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Siena",
"id": "https://www.grid.ac/institutes/grid.9024.f",
"name": [
"Dipartimento di Ingegneria dell\u2019Informazione, Universit\u00e1 di Siena, Via Roma 56, 53100, Siena, Italy"
],
"type": "Organization"
},
"familyName": "Fragnelli",
"givenName": "G.",
"id": "sg:person.015726053253.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015726053253.11"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1090/s0002-9947-1954-0063607-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000549514"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0294-1449(00)00117-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010610360"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1014287937",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-8176-4581-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014287937",
"https://doi.org/10.1007/978-0-8176-4581-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-8176-4581-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014287937",
"https://doi.org/10.1007/978-0-8176-4581-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-8176-4581-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014287937",
"https://doi.org/10.1007/978-0-8176-4581-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jfan.1995.1044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026016646"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017515027783",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031896211",
"https://doi.org/10.1023/a:1017515027783"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/(sici)1522-2616(200003)211:1<127::aid-mana127>3.0.co;2-a",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034837883"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605309508821097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041563014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/1020095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062861290"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0363012902403547",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062880586"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969644",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069675015"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/sm145-1-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072184139"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/conm/209/02771",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089203552"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-05",
"datePublishedReg": "2006-05-01",
"description": "We prove an estimate of Carleman type for the one dimensional heat equation $$ u_t - \\left( {a\\left( x \\right)u_x } \\right)_x + c\\left( {t,x} \\right)u = h\\left( {t,x} \\right),\\quad \\left( {t,x} \\right) \\in \\left( {0,T} \\right) \\times \\left( {0,1} \\right), $$ where a(\u00b7) is degenerate at 0. Such an estimate is derived for a special pseudo-convex weight function related to the degeneracy rate of a(\u00b7). Then, we study the null controllability on [0, 1] of the semilinear degenerate parabolic equation $$ u_t - \\left( {a\\left( x \\right)u_x } \\right)_x + f\\left( {t,x,u} \\right) = h\\left( {t,x} \\right)\\chi _\\omega \\left( x \\right), $$ where (t, x) \u2208(0, T) \u00d7 (0, 1), \u03c9=(\u03b1, \u03b2) \u2282\u2282 [0, 1], and f is locally Lipschitz with respect to u.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-006-0222-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"name": "Carleman estimates for degenerate parabolic operators with applications to null controllability",
"pagination": "161-204",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"3e2f0f80b748787d8dc46c1ff8d18a1cdf1f768c333582be7753ff841284895c"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-006-0222-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013053088"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-006-0222-6",
"https://app.dimensions.ai/details/publication/pub.1013053088"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T23:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000531.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00028-006-0222-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0222-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0222-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0222-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0222-6'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
21 PREDICATES
40 URIs
19 LITERALS
7 BLANK NODES