Ontology type: schema:ScholarlyArticle
2006-05
AUTHORS ABSTRACTIn this paper, we are interested in controllability properties of parabolic equations degenerating at the boundary of the space domain. We derive new Carleman estimates for the degenerate parabolic equation $$ w_t + \left( {a\left( x \right)w_x } \right)_x = f,\quad \left( {t,x} \right) \in \left( {0,T} \right) \times \left( {0,1} \right), $$ where the function a mainly satisfies $$ a \in \mathcal{C}^0 \left( {\left[ {0,1} \right]} \right) \cap \mathcal{C}^1 \left( {\left( {0,1} \right)} \right),a \gt 0 \hbox{on }\left( {0,1} \right) \hbox{and }\frac{1} {{\sqrt a }} \in L^1 \left( {0,1} \right). $$ We are mainly interested in the situation of a degenerate equation at the boundary i.e. in the case where a(0)=0 and / or a(1)=0. A typical example is a(x)=xα (1 − x)β with α, β ∈ [0, 2). As a consequence, we deduce null controllability results for the degenerate one dimensional heat equation $$ u_t - (a(x)u_x )_x = h\chi _w ,\quad (t,x) \in (0,T) \times (0,1),\quad \omega \subset \subset (0,1). $$ The present paper completes and improves previous works [7, 8] where this problem was solved in the case a(x)=xα with α ∈[0, 2). More... »
PAGES325-362
http://scigraph.springernature.com/pub.10.1007/s00028-006-0214-6
DOIhttp://dx.doi.org/10.1007/s00028-006-0214-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036618667
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Paul Sabatier University",
"id": "https://www.grid.ac/institutes/grid.15781.3a",
"name": [
"Laboratoire de Math\u00e9matiques MIP UMR CNRS 5640, Universit\u00e9 Paul Sabatier Toulouse III, 118 route de Narbonne, 31 062, Toulouse Cedex 4, France"
],
"type": "Organization"
},
"familyName": "Martinez",
"givenName": "P.",
"id": "sg:person.015213517753.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015213517753.19"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Paul Sabatier University",
"id": "https://www.grid.ac/institutes/grid.15781.3a",
"name": [
"Laboratoire de Math\u00e9matiques MIP UMR CNRS 5640, Universit\u00e9 Paul Sabatier Toulouse III, 118 route de Narbonne, 31 062, Toulouse Cedex 4, France"
],
"type": "Organization"
},
"familyName": "Vancostenoble",
"givenName": "J.",
"id": "sg:person.010475276561.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475276561.19"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.bulsci.2004.04.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001621665"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/sapm1973523189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008239731"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jde.2004.05.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017509672"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0021-7824(99)00144-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018658756"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00250466",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027994749",
"https://doi.org/10.1007/bf00250466"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00250466",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027994749",
"https://doi.org/10.1007/bf00250466"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-00-02665-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030704969"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1017515027783",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031896211",
"https://doi.org/10.1023/a:1017515027783"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.matpur.2004.02.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034323202"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/pl00005959",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038409462",
"https://doi.org/10.1007/pl00005959"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/03605309508821097",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041563014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0308210500030742",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054894756"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/qam/510972",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059348778"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-05",
"datePublishedReg": "2006-05-01",
"description": "In this paper, we are interested in controllability properties of parabolic equations degenerating at the boundary of the space domain. We derive new Carleman estimates for the degenerate parabolic equation $$ w_t + \\left( {a\\left( x \\right)w_x } \\right)_x = f,\\quad \\left( {t,x} \\right) \\in \\left( {0,T} \\right) \\times \\left( {0,1} \\right), $$ where the function a mainly satisfies $$ a \\in \\mathcal{C}^0 \\left( {\\left[ {0,1} \\right]} \\right) \\cap \\mathcal{C}^1 \\left( {\\left( {0,1} \\right)} \\right),a \\gt 0 \\hbox{on }\\left( {0,1} \\right) \\hbox{and }\\frac{1} {{\\sqrt a }} \\in L^1 \\left( {0,1} \\right). $$ We are mainly interested in the situation of a degenerate equation at the boundary i.e. in the case where a(0)=0 and / or a(1)=0. A typical example is a(x)=x\u03b1 (1 \u2212 x)\u03b2 with \u03b1, \u03b2 \u2208 [0, 2). As a consequence, we deduce null controllability results for the degenerate one dimensional heat equation $$ u_t - (a(x)u_x )_x = h\\chi _w ,\\quad (t,x) \\in (0,T) \\times (0,1),\\quad \\omega \\subset \\subset (0,1). $$ The present paper completes and improves previous works [7, 8] where this problem was solved in the case a(x)=x\u03b1 with \u03b1 \u2208[0, 2).",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-006-0214-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "6"
}
],
"name": "Carleman estimates for one-dimensional degenerate heat equations",
"pagination": "325-362",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ae705e07624cf5f870e7225f7fcf784fa762164ba493f7829d4ced24a667aaaf"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-006-0214-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036618667"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-006-0214-6",
"https://app.dimensions.ai/details/publication/pub.1036618667"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T19:13",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000533.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00028-006-0214-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0214-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0214-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0214-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-006-0214-6'
This table displays all metadata directly associated to this object as RDF triples.
107 TRIPLES
21 PREDICATES
39 URIs
19 LITERALS
7 BLANK NODES