Ontology type: schema:ScholarlyArticle
2002-05
AUTHORSF. Alabau, P. Cannarsa, V. Komornik
ABSTRACTLet two second order evolution equations be coupled via the zero order terms, and suppose that the first one is stabilized by a distributed feedback. What will then be the effect of such a partial stabilization on the decay of solutions at infinity? Is the behaviour of the first component sufficient to stabilize the second one? The answer given in this paper is that sufficiently smooth solutions decay polynomially at infinity, and that this decay rate is, in some sense, optimal. The stabilization result for abstract evolution equations is also applied to study the asymptotic behaviour of various systems of partial differential equations. More... »
PAGES127-150
http://scigraph.springernature.com/pub.10.1007/s00028-002-8083-0
DOIhttp://dx.doi.org/10.1007/s00028-002-8083-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026549559
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Lorraine",
"id": "https://www.grid.ac/institutes/grid.29172.3f",
"name": [
"D\u00e9partement de Math\u00e9matique, Universit\u00e9 de Metz, Ile du Saulcy, 57000 Metz, France,, FR"
],
"type": "Organization"
},
"familyName": "Alabau",
"givenName": "F.",
"id": "sg:person.014476532013.27",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014476532013.27"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Rome Tor Vergata",
"id": "https://www.grid.ac/institutes/grid.6530.0",
"name": [
"Dipartimento di Matematica, Universit\u00e0 di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy, e-mail: cannarsa@axp.mat.uniroma2.it, IT"
],
"type": "Organization"
},
"familyName": "Cannarsa",
"givenName": "P.",
"id": "sg:person.014257010655.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institut de Recherche Math\u00e9matique Avanc\u00e9e",
"id": "https://www.grid.ac/institutes/grid.469947.1",
"name": [
"Institut de Recherche Math\u00e9matique Avanc\u00e9e, Universit\u00e9 Louis Pasteur et CNRS, 7, rue Ren\u00e9 Descartes, 67084 Strasbourg Cedex, France, FR"
],
"type": "Organization"
},
"familyName": "Komornik",
"givenName": "V.",
"id": "sg:person.013053062253.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013053062253.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0022-0396(75)90009-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006374149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0764-4442(99)80316-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014128701"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002330010042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030090666",
"https://doi.org/10.1007/s002330010042"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmaa.1993.1071",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033914765"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmaa.1999.6678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042865492"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0318022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062843520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0363012997317505",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062881341"
],
"type": "CreativeWork"
}
],
"datePublished": "2002-05",
"datePublishedReg": "2002-05-01",
"description": "Let two second order evolution equations be coupled via the zero order terms, and suppose that the first one is stabilized by a distributed feedback. What will then be the effect of such a partial stabilization on the decay of solutions at infinity? Is the behaviour of the first component sufficient to stabilize the second one? The answer given in this paper is that sufficiently smooth solutions decay polynomially at infinity, and that this decay rate is, in some sense, optimal. The stabilization result for abstract evolution equations is also applied to study the asymptotic behaviour of various systems of partial differential equations.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00028-002-8083-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136368",
"issn": [
"1424-3199",
"1424-3202"
],
"name": "Journal of Evolution Equations",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "2"
}
],
"name": "Indirect internal stabilization of weakly coupled evolution equations",
"pagination": "127-150",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"7e7b915e0c71af3275a357b7f09c229221766b2a955550ea1956f2b3b61eb171"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00028-002-8083-0"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026549559"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00028-002-8083-0",
"https://app.dimensions.ai/details/publication/pub.1026549559"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T21:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000532.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00028-002-8083-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00028-002-8083-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00028-002-8083-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00028-002-8083-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00028-002-8083-0'
This table displays all metadata directly associated to this object as RDF triples.
103 TRIPLES
21 PREDICATES
34 URIs
19 LITERALS
7 BLANK NODES