On the Fractional Sums of Some Special Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Banu Ünalmış Uzun

ABSTRACT

We obtain new relations involving the Lerch transcendent and establish some closed-form expressions using special functions like the Riemann and Hurwitz zeta functions and fractional sums. We also get some formulae for the specific values of the derivative of Lerch transcendent.

PAGES

50

Journal

TITLE

Results in Mathematics

ISSUE

1

VOLUME

74

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00025-019-0964-4

DOI

http://dx.doi.org/10.1007/s00025-019-0964-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111893379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "I\u015f\u0131k University", 
          "id": "https://www.grid.ac/institutes/grid.58192.37", 
          "name": [
            "Department of Mathematics, I\u015f\u0131k University, 34980, \u015eile, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uzun", 
        "givenName": "Banu \u00dcnalm\u0131\u015f", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0377-0427(98)00193-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005617475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cam.2004.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009705377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2005.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012284649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-009-9199-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012974340", 
          "https://doi.org/10.1007/s11139-009-9199-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-009-9199-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012974340", 
          "https://doi.org/10.1007/s11139-009-9199-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-009-9214-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020134247", 
          "https://doi.org/10.1007/s11139-009-9214-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-009-9214-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020134247", 
          "https://doi.org/10.1007/s11139-009-9214-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11139-007-9102-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021545901", 
          "https://doi.org/10.1007/s11139-007-9102-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10652469.2011.622274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030566897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048605412", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048605412", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2153329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069792992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4169/amer.math.monthly.118.02.136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072313755"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "We obtain new relations involving the Lerch transcendent and establish some closed-form expressions using special functions like the Riemann and Hurwitz zeta functions and fractional sums. We also get some formulae for the specific values of the derivative of Lerch transcendent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00025-019-0964-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136180", 
        "issn": [
          "1422-6383", 
          "1420-9012"
        ], 
        "name": "Results in Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "On the Fractional Sums of Some Special Functions", 
    "pagination": "50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "662b4f6a73d0aa95501e9f0778f7be2baea59ed9c659213437f0c6516fc904d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00025-019-0964-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111893379"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00025-019-0964-4", 
      "https://app.dimensions.ai/details/publication/pub.1111893379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00025-019-0964-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00025-019-0964-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00025-019-0964-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00025-019-0964-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00025-019-0964-4'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      20 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00025-019-0964-4 schema:author Nb846d790fb7c411a8e2baa667b20972c
2 schema:citation sg:pub.10.1007/s11139-007-9102-0
3 sg:pub.10.1007/s11139-009-9199-4
4 sg:pub.10.1007/s11139-009-9214-9
5 https://app.dimensions.ai/details/publication/pub.1048605412
6 https://doi.org/10.1016/j.cam.2004.08.009
7 https://doi.org/10.1016/j.jnt.2005.09.005
8 https://doi.org/10.1016/s0377-0427(98)00193-9
9 https://doi.org/10.1080/10652469.2011.622274
10 https://doi.org/10.2307/2153329
11 https://doi.org/10.4169/amer.math.monthly.118.02.136
12 schema:datePublished 2019-03
13 schema:datePublishedReg 2019-03-01
14 schema:description We obtain new relations involving the Lerch transcendent and establish some closed-form expressions using special functions like the Riemann and Hurwitz zeta functions and fractional sums. We also get some formulae for the specific values of the derivative of Lerch transcendent.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N4ea03885aecf406982f3737de9c452e8
19 N8c7783ece8634271a59d39ca8d517943
20 sg:journal.1136180
21 schema:name On the Fractional Sums of Some Special Functions
22 schema:pagination 50
23 schema:productId N30bc780ef0fc463ba9730443c8398bb6
24 Nca2791cec74a49efbfa24f9860cafcaf
25 Ne3010e99cfc84f1189f0ff061b2fb93f
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111893379
27 https://doi.org/10.1007/s00025-019-0964-4
28 schema:sdDatePublished 2019-04-11T14:03
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher Nf6ea144addaf4da493f9db74fefde5ad
31 schema:url https://link.springer.com/10.1007%2Fs00025-019-0964-4
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N30bc780ef0fc463ba9730443c8398bb6 schema:name readcube_id
36 schema:value 662b4f6a73d0aa95501e9f0778f7be2baea59ed9c659213437f0c6516fc904d1
37 rdf:type schema:PropertyValue
38 N4ea03885aecf406982f3737de9c452e8 schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N8c7783ece8634271a59d39ca8d517943 schema:volumeNumber 74
41 rdf:type schema:PublicationVolume
42 N9409866f79d64959b2e75e48df46cf60 schema:affiliation https://www.grid.ac/institutes/grid.58192.37
43 schema:familyName Uzun
44 schema:givenName Banu Ünalmış
45 rdf:type schema:Person
46 Nb846d790fb7c411a8e2baa667b20972c rdf:first N9409866f79d64959b2e75e48df46cf60
47 rdf:rest rdf:nil
48 Nca2791cec74a49efbfa24f9860cafcaf schema:name dimensions_id
49 schema:value pub.1111893379
50 rdf:type schema:PropertyValue
51 Ne3010e99cfc84f1189f0ff061b2fb93f schema:name doi
52 schema:value 10.1007/s00025-019-0964-4
53 rdf:type schema:PropertyValue
54 Nf6ea144addaf4da493f9db74fefde5ad schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 sg:journal.1136180 schema:issn 1420-9012
57 1422-6383
58 schema:name Results in Mathematics
59 rdf:type schema:Periodical
60 sg:pub.10.1007/s11139-007-9102-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021545901
61 https://doi.org/10.1007/s11139-007-9102-0
62 rdf:type schema:CreativeWork
63 sg:pub.10.1007/s11139-009-9199-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012974340
64 https://doi.org/10.1007/s11139-009-9199-4
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/s11139-009-9214-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020134247
67 https://doi.org/10.1007/s11139-009-9214-9
68 rdf:type schema:CreativeWork
69 https://app.dimensions.ai/details/publication/pub.1048605412 schema:CreativeWork
70 https://doi.org/10.1016/j.cam.2004.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009705377
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/j.jnt.2005.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012284649
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/s0377-0427(98)00193-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005617475
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1080/10652469.2011.622274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030566897
77 rdf:type schema:CreativeWork
78 https://doi.org/10.2307/2153329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069792992
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4169/amer.math.monthly.118.02.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072313755
81 rdf:type schema:CreativeWork
82 https://www.grid.ac/institutes/grid.58192.37 schema:alternateName Işık University
83 schema:name Department of Mathematics, Işık University, 34980, Şile, Istanbul, Turkey
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...