Paley-Wiener Isomorphism Over Infinite-Dimensional Unitary Groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-20

AUTHORS

Oleh Lopushansky

ABSTRACT

An analog of the Paley-Wiener isomorphism for the Hardy space with an invariant measure over infinite-dimensional unitary groups is described. This allows us to investigate on such space the shift and multiplicative groups, as well as, their generators and intertwining operators. We show applications to the Gauss-Weierstrass semigroups and to the Weyl–Schrödinger irreducible representations of complexified infinite-dimensional Heisenberg groups. More... »

PAGES

2101-2120

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00025-017-0750-0

DOI

http://dx.doi.org/10.1007/s00025-017-0750-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091860449


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Mathematics and Natural Sciences, University of Rzesz\u00f3w, 1 Pigonia Str., 35-310, Rzeszow, Poland", 
          "id": "http://www.grid.ac/institutes/grid.13856.39", 
          "name": [
            "Faculty of Mathematics and Natural Sciences, University of Rzesz\u00f3w, 1 Pigonia Str., 35-310, Rzeszow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopushansky", 
        "givenName": "Oleh", 
        "id": "sg:person.016253124153.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253124153.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00025-016-0549-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048907587", 
          "https://doi.org/10.1007/s00025-016-0549-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-07931-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026864200", 
          "https://doi.org/10.1007/978-3-662-07931-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-5768-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031063971", 
          "https://doi.org/10.1007/978-94-011-5768-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46066-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043240248", 
          "https://doi.org/10.1007/978-3-642-46066-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7601-5_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012580554", 
          "https://doi.org/10.1007/3-7643-7601-5_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-31756-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033509188", 
          "https://doi.org/10.1007/978-3-319-31756-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-0509-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004104569", 
          "https://doi.org/10.1007/978-94-011-0509-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-20", 
    "datePublishedReg": "2017-09-20", 
    "description": "An analog of the Paley-Wiener isomorphism for the Hardy space with an invariant measure over infinite-dimensional unitary groups is described. This allows us to investigate on such space the shift and multiplicative groups, as well as, their generators and intertwining operators. We show applications to the Gauss-Weierstrass semigroups and to the Weyl\u2013Schr\u00f6dinger irreducible representations of complexified infinite-dimensional Heisenberg groups.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00025-017-0750-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136180", 
        "issn": [
          "1422-6383", 
          "1420-9012"
        ], 
        "name": "Results in Mathematics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "72"
      }
    ], 
    "keywords": [
      "infinite-dimensional unitary group", 
      "infinite-dimensional Heisenberg groups", 
      "unitary group", 
      "invariant measure", 
      "irreducible representations", 
      "Heisenberg group", 
      "multiplicative group", 
      "Hardy spaces", 
      "such spaces", 
      "isomorphism", 
      "space", 
      "semigroups", 
      "operators", 
      "representation", 
      "generator", 
      "applications", 
      "analogues", 
      "measures", 
      "shift", 
      "group"
    ], 
    "name": "Paley-Wiener Isomorphism Over Infinite-Dimensional Unitary Groups", 
    "pagination": "2101-2120", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091860449"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00025-017-0750-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00025-017-0750-0", 
      "https://app.dimensions.ai/details/publication/pub.1091860449"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_739.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00025-017-0750-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00025-017-0750-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00025-017-0750-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00025-017-0750-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00025-017-0750-0'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      51 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00025-017-0750-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8134af07ae924dd691f5748c74964f30
4 schema:citation sg:pub.10.1007/3-7643-7601-5_15
5 sg:pub.10.1007/978-3-319-31756-4_10
6 sg:pub.10.1007/978-3-642-46066-1
7 sg:pub.10.1007/978-3-662-07931-7
8 sg:pub.10.1007/978-94-011-0509-5
9 sg:pub.10.1007/978-94-011-5768-1
10 sg:pub.10.1007/s00025-016-0549-4
11 schema:datePublished 2017-09-20
12 schema:datePublishedReg 2017-09-20
13 schema:description An analog of the Paley-Wiener isomorphism for the Hardy space with an invariant measure over infinite-dimensional unitary groups is described. This allows us to investigate on such space the shift and multiplicative groups, as well as, their generators and intertwining operators. We show applications to the Gauss-Weierstrass semigroups and to the Weyl–Schrödinger irreducible representations of complexified infinite-dimensional Heisenberg groups.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N87720e1555b1425294b8456d5bbda4b5
17 Nc0381794554a4828982d318a3342730c
18 sg:journal.1136180
19 schema:keywords Hardy spaces
20 Heisenberg group
21 analogues
22 applications
23 generator
24 group
25 infinite-dimensional Heisenberg groups
26 infinite-dimensional unitary group
27 invariant measure
28 irreducible representations
29 isomorphism
30 measures
31 multiplicative group
32 operators
33 representation
34 semigroups
35 shift
36 space
37 such spaces
38 unitary group
39 schema:name Paley-Wiener Isomorphism Over Infinite-Dimensional Unitary Groups
40 schema:pagination 2101-2120
41 schema:productId N2798f5ed1cdf41408774741445e1da6d
42 Nd97a87b50cb141de90833a17e9a16e24
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091860449
44 https://doi.org/10.1007/s00025-017-0750-0
45 schema:sdDatePublished 2022-12-01T06:36
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N50a0aecc5203416b9c1547a6b158a2bb
48 schema:url https://doi.org/10.1007/s00025-017-0750-0
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N2798f5ed1cdf41408774741445e1da6d schema:name doi
53 schema:value 10.1007/s00025-017-0750-0
54 rdf:type schema:PropertyValue
55 N50a0aecc5203416b9c1547a6b158a2bb schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 N8134af07ae924dd691f5748c74964f30 rdf:first sg:person.016253124153.47
58 rdf:rest rdf:nil
59 N87720e1555b1425294b8456d5bbda4b5 schema:issueNumber 4
60 rdf:type schema:PublicationIssue
61 Nc0381794554a4828982d318a3342730c schema:volumeNumber 72
62 rdf:type schema:PublicationVolume
63 Nd97a87b50cb141de90833a17e9a16e24 schema:name dimensions_id
64 schema:value pub.1091860449
65 rdf:type schema:PropertyValue
66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
67 schema:name Mathematical Sciences
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
70 schema:name Pure Mathematics
71 rdf:type schema:DefinedTerm
72 sg:journal.1136180 schema:issn 1420-9012
73 1422-6383
74 schema:name Results in Mathematics
75 schema:publisher Springer Nature
76 rdf:type schema:Periodical
77 sg:person.016253124153.47 schema:affiliation grid-institutes:grid.13856.39
78 schema:familyName Lopushansky
79 schema:givenName Oleh
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016253124153.47
81 rdf:type schema:Person
82 sg:pub.10.1007/3-7643-7601-5_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012580554
83 https://doi.org/10.1007/3-7643-7601-5_15
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-319-31756-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033509188
86 https://doi.org/10.1007/978-3-319-31756-4_10
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/978-3-642-46066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043240248
89 https://doi.org/10.1007/978-3-642-46066-1
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/978-3-662-07931-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026864200
92 https://doi.org/10.1007/978-3-662-07931-7
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-94-011-0509-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004104569
95 https://doi.org/10.1007/978-94-011-0509-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-94-011-5768-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031063971
98 https://doi.org/10.1007/978-94-011-5768-1
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00025-016-0549-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048907587
101 https://doi.org/10.1007/s00025-016-0549-4
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.13856.39 schema:alternateName Faculty of Mathematics and Natural Sciences, University of Rzeszów, 1 Pigonia Str., 35-310, Rzeszow, Poland
104 schema:name Faculty of Mathematics and Natural Sciences, University of Rzeszów, 1 Pigonia Str., 35-310, Rzeszow, Poland
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...