Ontology type: schema:ScholarlyArticle
2017-01-02
AUTHORSTuncer Acar, P. N. Agrawal, Trapti Neer
ABSTRACTIn the present paper, we introduce the Bezier-variant of Durrmeyer modification of the Bernstein operators based on a function τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which is infinite times continuously differentiable and strictly increasing function on [0, 1] such that τ(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (0)=0$$\end{document} and τ(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (1)=1$$\end{document}. We give the rate of approximation of these operators in terms of usual modulus of continuity and K-functional. Next, we establish the quantitative Voronovskaja type theorem. In the last section we obtain the rate of convergence for functions having derivative of bounded variation. More... »
PAGES1341-1358
http://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3
DOIhttp://dx.doi.org/10.1007/s00025-016-0639-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1009224441
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey",
"id": "http://www.grid.ac/institutes/grid.411047.7",
"name": [
"Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey"
],
"type": "Organization"
},
"familyName": "Acar",
"givenName": "Tuncer",
"id": "sg:person.016504605207.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504605207.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India",
"id": "http://www.grid.ac/institutes/grid.19003.3b",
"name": [
"Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
],
"type": "Organization"
},
"familyName": "Agrawal",
"givenName": "P. N.",
"id": "sg:person.07413637437.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India",
"id": "http://www.grid.ac/institutes/grid.19003.3b",
"name": [
"Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
],
"type": "Organization"
},
"familyName": "Neer",
"givenName": "Trapti",
"id": "sg:person.07364301767.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364301767.55"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00025-008-0338-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007311039",
"https://doi.org/10.1007/s00025-008-0338-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1024571126455",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020608672",
"https://doi.org/10.1023/a:1024571126455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4778-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015861055",
"https://doi.org/10.1007/978-1-4612-4778-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11117-015-0338-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034692912",
"https://doi.org/10.1007/s11117-015-0338-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1155/2009/702680",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027349140",
"https://doi.org/10.1155/2009/702680"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-01-02",
"datePublishedReg": "2017-01-02",
"description": "In the present paper, we introduce the Bezier-variant of Durrmeyer modification of the Bernstein operators based on a function \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}, which is infinite times continuously differentiable and strictly increasing function on [0,\u00a01] such that \u03c4(0)=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (0)=0$$\\end{document} and \u03c4(1)=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (1)=1$$\\end{document}. We give the rate of approximation of these operators in terms of usual modulus of continuity and K-functional. Next, we establish the quantitative Voronovskaja type theorem. In the last section we obtain the rate of convergence for functions having derivative of bounded variation.",
"genre": "article",
"id": "sg:pub.10.1007/s00025-016-0639-3",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136180",
"issn": [
"1422-6383",
"1420-9012"
],
"name": "Results in Mathematics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "72"
}
],
"keywords": [
"Bezier variant",
"rate",
"function",
"variants",
"time",
"sections",
"modification",
"continuity",
"derivatives",
"quantitative Voronovskaja type theorem",
"Durrmeyer modification",
"variation",
"terms",
"usual modulus",
"present paper",
"Bernstein\u2013Durrmeyer type operators",
"last section",
"Voronovskaja type theorem",
"operators",
"infinite time",
"paper",
"rate of approximation",
"convergence",
"modulus",
"type theorem",
"rate of convergence",
"type operators",
"Bernstein operators",
"approximation",
"theorem"
],
"name": "Bezier variant of the Bernstein\u2013Durrmeyer type operators",
"pagination": "1341-1358",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1009224441"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00025-016-0639-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00025-016-0639-3",
"https://app.dimensions.ai/details/publication/pub.1009224441"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:06",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_735.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00025-016-0639-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'
This table displays all metadata directly associated to this object as RDF triples.
124 TRIPLES
21 PREDICATES
59 URIs
46 LITERALS
6 BLANK NODES