Bezier variant of the Bernstein–Durrmeyer type operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-02

AUTHORS

Tuncer Acar, P. N. Agrawal, Trapti Neer

ABSTRACT

In the present paper, we introduce the Bezier-variant of Durrmeyer modification of the Bernstein operators based on a function τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which is infinite times continuously differentiable and strictly increasing function on [0, 1] such that τ(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (0)=0$$\end{document} and τ(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (1)=1$$\end{document}. We give the rate of approximation of these operators in terms of usual modulus of continuity and K-functional. Next, we establish the quantitative Voronovskaja type theorem. In the last section we obtain the rate of convergence for functions having derivative of bounded variation. More... »

PAGES

1341-1358

References to SciGraph publications

  • 2015-05-08. The new forms of Voronovskaya’s theorem in weighted spaces in POSITIVITY
  • 2003-05. Positive linear operators which preserve x2 in ACTA MATHEMATICA HUNGARICA
  • 2009-06-29. General King-Type Operators in RESULTS IN MATHEMATICS
  • 2009-05-05. A New Estimate on the Rate of Convergence of Durrmeyer-Bézier Operators in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 1987. Moduli of Smoothness in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3

    DOI

    http://dx.doi.org/10.1007/s00025-016-0639-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009224441


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey", 
              "id": "http://www.grid.ac/institutes/grid.411047.7", 
              "name": [
                "Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Acar", 
            "givenName": "Tuncer", 
            "id": "sg:person.016504605207.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504605207.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Agrawal", 
            "givenName": "P. N.", 
            "id": "sg:person.07413637437.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India", 
              "id": "http://www.grid.ac/institutes/grid.19003.3b", 
              "name": [
                "Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Neer", 
            "givenName": "Trapti", 
            "id": "sg:person.07364301767.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364301767.55"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00025-008-0338-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007311039", 
              "https://doi.org/10.1007/s00025-008-0338-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024571126455", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020608672", 
              "https://doi.org/10.1023/a:1024571126455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-4778-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015861055", 
              "https://doi.org/10.1007/978-1-4612-4778-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11117-015-0338-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034692912", 
              "https://doi.org/10.1007/s11117-015-0338-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/2009/702680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027349140", 
              "https://doi.org/10.1155/2009/702680"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01-02", 
        "datePublishedReg": "2017-01-02", 
        "description": "In the present paper, we introduce the Bezier-variant of Durrmeyer modification of the Bernstein operators based on a function \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}, which is infinite times continuously differentiable and strictly increasing function on [0,\u00a01] such that \u03c4(0)=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (0)=0$$\\end{document} and \u03c4(1)=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau (1)=1$$\\end{document}. We give the rate of approximation of these operators in terms of usual modulus of continuity and K-functional. Next, we establish the quantitative Voronovskaja type theorem. In the last section we obtain the rate of convergence for functions having derivative of bounded variation.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00025-016-0639-3", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136180", 
            "issn": [
              "1422-6383", 
              "1420-9012"
            ], 
            "name": "Results in Mathematics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "72"
          }
        ], 
        "keywords": [
          "Bezier variant", 
          "rate", 
          "function", 
          "variants", 
          "time", 
          "sections", 
          "modification", 
          "continuity", 
          "derivatives", 
          "quantitative Voronovskaja type theorem", 
          "Durrmeyer modification", 
          "variation", 
          "terms", 
          "usual modulus", 
          "present paper", 
          "Bernstein\u2013Durrmeyer type operators", 
          "last section", 
          "Voronovskaja type theorem", 
          "operators", 
          "infinite time", 
          "paper", 
          "rate of approximation", 
          "convergence", 
          "modulus", 
          "type theorem", 
          "rate of convergence", 
          "type operators", 
          "Bernstein operators", 
          "approximation", 
          "theorem"
        ], 
        "name": "Bezier variant of the Bernstein\u2013Durrmeyer type operators", 
        "pagination": "1341-1358", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009224441"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00025-016-0639-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00025-016-0639-3", 
          "https://app.dimensions.ai/details/publication/pub.1009224441"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_735.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00025-016-0639-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00025-016-0639-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      21 PREDICATES      59 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00025-016-0639-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N35f16bf611944551bb89210a979c78dc
    4 schema:citation sg:pub.10.1007/978-1-4612-4778-4
    5 sg:pub.10.1007/s00025-008-0338-9
    6 sg:pub.10.1007/s11117-015-0338-4
    7 sg:pub.10.1023/a:1024571126455
    8 sg:pub.10.1155/2009/702680
    9 schema:datePublished 2017-01-02
    10 schema:datePublishedReg 2017-01-02
    11 schema:description In the present paper, we introduce the Bezier-variant of Durrmeyer modification of the Bernstein operators based on a function τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which is infinite times continuously differentiable and strictly increasing function on [0, 1] such that τ(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (0)=0$$\end{document} and τ(1)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (1)=1$$\end{document}. We give the rate of approximation of these operators in terms of usual modulus of continuity and K-functional. Next, we establish the quantitative Voronovskaja type theorem. In the last section we obtain the rate of convergence for functions having derivative of bounded variation.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N483708ad0de949839d95b324f65f8f14
    15 N6e0ede46dc2a4ea0a152e399472bd4ec
    16 sg:journal.1136180
    17 schema:keywords Bernstein operators
    18 Bernstein–Durrmeyer type operators
    19 Bezier variant
    20 Durrmeyer modification
    21 Voronovskaja type theorem
    22 approximation
    23 continuity
    24 convergence
    25 derivatives
    26 function
    27 infinite time
    28 last section
    29 modification
    30 modulus
    31 operators
    32 paper
    33 present paper
    34 quantitative Voronovskaja type theorem
    35 rate
    36 rate of approximation
    37 rate of convergence
    38 sections
    39 terms
    40 theorem
    41 time
    42 type operators
    43 type theorem
    44 usual modulus
    45 variants
    46 variation
    47 schema:name Bezier variant of the Bernstein–Durrmeyer type operators
    48 schema:pagination 1341-1358
    49 schema:productId N9adfef7df08e4b43be4b15b3d5bdf570
    50 Nf3a3d594fdf44863a243f98307dd694b
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009224441
    52 https://doi.org/10.1007/s00025-016-0639-3
    53 schema:sdDatePublished 2022-08-04T17:06
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher Na5ce0ae883804651bc3370708ef88ab0
    56 schema:url https://doi.org/10.1007/s00025-016-0639-3
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N1864b30e734240d393e4901ad6df65b8 rdf:first sg:person.07364301767.55
    61 rdf:rest rdf:nil
    62 N35f16bf611944551bb89210a979c78dc rdf:first sg:person.016504605207.51
    63 rdf:rest N39f41dd62e014c489c7158b036bef726
    64 N39f41dd62e014c489c7158b036bef726 rdf:first sg:person.07413637437.68
    65 rdf:rest N1864b30e734240d393e4901ad6df65b8
    66 N483708ad0de949839d95b324f65f8f14 schema:issueNumber 3
    67 rdf:type schema:PublicationIssue
    68 N6e0ede46dc2a4ea0a152e399472bd4ec schema:volumeNumber 72
    69 rdf:type schema:PublicationVolume
    70 N9adfef7df08e4b43be4b15b3d5bdf570 schema:name dimensions_id
    71 schema:value pub.1009224441
    72 rdf:type schema:PropertyValue
    73 Na5ce0ae883804651bc3370708ef88ab0 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 Nf3a3d594fdf44863a243f98307dd694b schema:name doi
    76 schema:value 10.1007/s00025-016-0639-3
    77 rdf:type schema:PropertyValue
    78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Mathematical Sciences
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Pure Mathematics
    83 rdf:type schema:DefinedTerm
    84 sg:journal.1136180 schema:issn 1420-9012
    85 1422-6383
    86 schema:name Results in Mathematics
    87 schema:publisher Springer Nature
    88 rdf:type schema:Periodical
    89 sg:person.016504605207.51 schema:affiliation grid-institutes:grid.411047.7
    90 schema:familyName Acar
    91 schema:givenName Tuncer
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016504605207.51
    93 rdf:type schema:Person
    94 sg:person.07364301767.55 schema:affiliation grid-institutes:grid.19003.3b
    95 schema:familyName Neer
    96 schema:givenName Trapti
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364301767.55
    98 rdf:type schema:Person
    99 sg:person.07413637437.68 schema:affiliation grid-institutes:grid.19003.3b
    100 schema:familyName Agrawal
    101 schema:givenName P. N.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413637437.68
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-1-4612-4778-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861055
    105 https://doi.org/10.1007/978-1-4612-4778-4
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s00025-008-0338-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007311039
    108 https://doi.org/10.1007/s00025-008-0338-9
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s11117-015-0338-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034692912
    111 https://doi.org/10.1007/s11117-015-0338-4
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1023/a:1024571126455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020608672
    114 https://doi.org/10.1023/a:1024571126455
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1155/2009/702680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027349140
    117 https://doi.org/10.1155/2009/702680
    118 rdf:type schema:CreativeWork
    119 grid-institutes:grid.19003.3b schema:alternateName Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    120 schema:name Department of Mathematics, Indian Institute of Technology Roorkee, 247667, Roorkee, India
    121 rdf:type schema:Organization
    122 grid-institutes:grid.411047.7 schema:alternateName Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey
    123 schema:name Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450, Yahsihan, Kirikkale, Turkey
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...