Comparisons of Gauge, TMPA and IMERG Products for Monsoon and Tropical Cyclone Precipitation in Southern China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Fengjiao Chen, Hao Huang

ABSTRACT

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) Mission (IMERG) products are compared against 447 quality-controlled rain gauges in southern China (SC) during summer (May to August) for the period 2014–2016. The differences of TMPA and IMERG in measuring the monsoon and tropical cyclone (TC) precipitation, considering the mean spatial patterns, and rainfall intensities are evaluated quantitatively. Statistical analysis shows that IMERG has much higher correlations of precipitation frequency (PF) with gauge observations for monsoon and TC precipitation. However, both satellite-based products show much poorer capability in estimating conditional rainfall and PF for TC precipitation, especially for estimating large conditional rainfall in TC systems. The capability of capturing the precipitation events at different rainfall intensities decreases with the increase of rainfall threshold for both monsoon and TC precipitation. Generally, IMERG exhibits a superior ability to detect precipitation at different rainfall intensities than TMPA. In depicting the diurnal cycles, IMERG shows a much better performance in estimating rainfall and PF for monsoon precipitation than TMPA by revealing the comparable diurnal amplitudes to the rain gauges, whereas TMPA fails to accurately estimate the early morning rainfall and PF. As a successor to TMPA, IMERG is a reliable source of precipitation estimates for future studies on precipitation meteorology. More... »

PAGES

1-18

Journal

TITLE

Pure and Applied Geophysics

ISSUE

4

VOLUME

176

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00024-018-2038-z

DOI

http://dx.doi.org/10.1007/s00024-018-2038-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109894750


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Anhui Meteorological Information Centre, Anhui Institute of Meteorological Science, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Fengjiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "Key Laboratory for Mesoscale Severe Weather/MOE, School of Atmospheric Sciences, Nanjing University, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Hao", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.atmosres.2011.10.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001556148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-010-9508-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742323", 
          "https://doi.org/10.1007/s11069-010-9508-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-010-9508-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742323", 
          "https://doi.org/10.1007/s11069-010-9508-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8020135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004748737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-015-5002-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004872341", 
          "https://doi.org/10.1007/s00376-015-5002-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005628747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2005.07.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005628747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005695037", 
          "https://doi.org/10.1007/s00382-007-0260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005695037", 
          "https://doi.org/10.1007/s00382-007-0260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005wr004398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jd011103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006208230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008jd011103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006208230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl032437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008351249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-11-12421-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009986851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jhm859.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011011397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd011949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011982552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd011949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011982552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012024490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012024490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3454.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012334808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1128845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012826834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jhm944.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013407610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs8070544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.9779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017076662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017936174", 
          "https://doi.org/10.1038/srep33044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm560.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018207213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2028.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022822536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003jd003497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024948139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2007.11.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027681218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028595909", 
          "https://doi.org/10.1038/nature09763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosres.2016.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029573758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2188.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030116175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00100.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030884887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/hess-15-1109-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031510855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008bams2631.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034655434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj.87a.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035768794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech-d-12-00119.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036233440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-15-0059.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037672273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2015.11.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039121069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-15-0081.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039284460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-015-5103-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043863713", 
          "https://doi.org/10.1007/s11430-015-5103-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3805.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044633317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013gl058499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045074758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-88-1-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046080823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2915-7_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170688", 
          "https://doi.org/10.1007/978-90-481-2915-7_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-2915-7_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170688", 
          "https://doi.org/10.1007/978-90-481-2915-7_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0666.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-16-0187.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084239638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jhm-d-16-0277.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091111968"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) Mission (IMERG) products are compared against 447 quality-controlled rain gauges in southern China (SC) during summer (May to August) for the period 2014\u20132016. The differences of TMPA and IMERG in measuring the monsoon and tropical cyclone (TC) precipitation, considering the mean spatial patterns, and rainfall intensities are evaluated quantitatively. Statistical analysis shows that IMERG has much higher correlations of precipitation frequency (PF) with gauge observations for monsoon and TC precipitation. However, both satellite-based products show much poorer capability in estimating conditional rainfall and PF for TC precipitation, especially for estimating large conditional rainfall in TC systems. The capability of capturing the precipitation events at different rainfall intensities decreases with the increase of rainfall threshold for both monsoon and TC precipitation. Generally, IMERG exhibits a superior ability to detect precipitation at different rainfall intensities than TMPA. In depicting the diurnal cycles, IMERG shows a much better performance in estimating rainfall and PF for monsoon precipitation than TMPA by revealing the comparable diurnal amplitudes to the rain gauges, whereas TMPA fails to accurately estimate the early morning rainfall and PF. As a successor to TMPA, IMERG is a reliable source of precipitation estimates for future studies on precipitation meteorology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00024-018-2038-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136817", 
        "issn": [
          "0033-4553", 
          "1420-9136"
        ], 
        "name": "Pure and Applied Geophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "176"
      }
    ], 
    "name": "Comparisons of Gauge, TMPA and IMERG Products for Monsoon and Tropical Cyclone Precipitation in Southern China", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f56f66c749b6249c44cb154130e185271584d2d10eccb2dc6946eb1b85c203d6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00024-018-2038-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109894750"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00024-018-2038-z", 
      "https://app.dimensions.ai/details/publication/pub.1109894750"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117117_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00024-018-2038-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2038-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2038-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2038-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2038-z'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      70 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00024-018-2038-z schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nc805cb93a507437e9d7e7d5bb91f7ad4
4 schema:citation sg:pub.10.1007/978-90-481-2915-7_1
5 sg:pub.10.1007/s00376-015-5002-1
6 sg:pub.10.1007/s00382-007-0260-y
7 sg:pub.10.1007/s11069-010-9508-7
8 sg:pub.10.1007/s11430-015-5103-9
9 sg:pub.10.1038/nature09763
10 sg:pub.10.1038/srep33044
11 https://doi.org/10.1002/2013gl058499
12 https://doi.org/10.1002/hyp.9779
13 https://doi.org/10.1002/qj.828
14 https://doi.org/10.1016/j.advwatres.2015.11.008
15 https://doi.org/10.1016/j.atmosenv.2005.07.061
16 https://doi.org/10.1016/j.atmosenv.2007.11.025
17 https://doi.org/10.1016/j.atmosres.2011.10.021
18 https://doi.org/10.1016/j.atmosres.2016.12.007
19 https://doi.org/10.1029/2003jd003497
20 https://doi.org/10.1029/2005jd006290
21 https://doi.org/10.1029/2005wr004398
22 https://doi.org/10.1029/2007gl032437
23 https://doi.org/10.1029/2008jd011103
24 https://doi.org/10.1029/2009jd011949
25 https://doi.org/10.1126/science.1128845
26 https://doi.org/10.1175/2007jhm859.1
27 https://doi.org/10.1175/2007jhm944.1
28 https://doi.org/10.1175/2008bams2631.1
29 https://doi.org/10.1175/2008jcli2028.1
30 https://doi.org/10.1175/2008jcli2188.1
31 https://doi.org/10.1175/2010jcli3454.1
32 https://doi.org/10.1175/2010jcli3805.1
33 https://doi.org/10.1175/bams-88-1-47
34 https://doi.org/10.1175/jcli-d-12-00100.1
35 https://doi.org/10.1175/jcli-d-15-0666.1
36 https://doi.org/10.1175/jhm-d-15-0059.1
37 https://doi.org/10.1175/jhm-d-15-0081.1
38 https://doi.org/10.1175/jhm-d-16-0187.1
39 https://doi.org/10.1175/jhm-d-16-0277.1
40 https://doi.org/10.1175/jhm560.1
41 https://doi.org/10.1175/jtech-d-12-00119.1
42 https://doi.org/10.2151/jmsj.87a.1
43 https://doi.org/10.3390/rs8020135
44 https://doi.org/10.3390/rs8070544
45 https://doi.org/10.5194/acp-11-12421-2011
46 https://doi.org/10.5194/hess-15-1109-2011
47 schema:datePublished 2019-04
48 schema:datePublishedReg 2019-04-01
49 schema:description The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (GPM) Mission (IMERG) products are compared against 447 quality-controlled rain gauges in southern China (SC) during summer (May to August) for the period 2014–2016. The differences of TMPA and IMERG in measuring the monsoon and tropical cyclone (TC) precipitation, considering the mean spatial patterns, and rainfall intensities are evaluated quantitatively. Statistical analysis shows that IMERG has much higher correlations of precipitation frequency (PF) with gauge observations for monsoon and TC precipitation. However, both satellite-based products show much poorer capability in estimating conditional rainfall and PF for TC precipitation, especially for estimating large conditional rainfall in TC systems. The capability of capturing the precipitation events at different rainfall intensities decreases with the increase of rainfall threshold for both monsoon and TC precipitation. Generally, IMERG exhibits a superior ability to detect precipitation at different rainfall intensities than TMPA. In depicting the diurnal cycles, IMERG shows a much better performance in estimating rainfall and PF for monsoon precipitation than TMPA by revealing the comparable diurnal amplitudes to the rain gauges, whereas TMPA fails to accurately estimate the early morning rainfall and PF. As a successor to TMPA, IMERG is a reliable source of precipitation estimates for future studies on precipitation meteorology.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf N00fe57902e87497eaee07a25fda56323
54 N35c88e30375f4a07ad47a7559defa518
55 sg:journal.1136817
56 schema:name Comparisons of Gauge, TMPA and IMERG Products for Monsoon and Tropical Cyclone Precipitation in Southern China
57 schema:pagination 1-18
58 schema:productId N0019a58968264e519f6522deaaec6ebe
59 N92837ad80a24426cb10e90a4de99d229
60 N9bb7390f776b44b8b017cbc017fcb972
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109894750
62 https://doi.org/10.1007/s00024-018-2038-z
63 schema:sdDatePublished 2019-04-11T14:19
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nbee9f2bead0b467f82d50edadc567a99
66 schema:url https://link.springer.com/10.1007%2Fs00024-018-2038-z
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N0019a58968264e519f6522deaaec6ebe schema:name doi
71 schema:value 10.1007/s00024-018-2038-z
72 rdf:type schema:PropertyValue
73 N00fe57902e87497eaee07a25fda56323 schema:volumeNumber 176
74 rdf:type schema:PublicationVolume
75 N35c88e30375f4a07ad47a7559defa518 schema:issueNumber 4
76 rdf:type schema:PublicationIssue
77 N746b87b8192c4f5db9bdb24c1bf248f7 schema:name Anhui Meteorological Information Centre, Anhui Institute of Meteorological Science, Hefei, China
78 rdf:type schema:Organization
79 N914337e0791b4554bd9ac01b0e326b76 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
80 schema:familyName Huang
81 schema:givenName Hao
82 rdf:type schema:Person
83 N92837ad80a24426cb10e90a4de99d229 schema:name dimensions_id
84 schema:value pub.1109894750
85 rdf:type schema:PropertyValue
86 N9bb7390f776b44b8b017cbc017fcb972 schema:name readcube_id
87 schema:value f56f66c749b6249c44cb154130e185271584d2d10eccb2dc6946eb1b85c203d6
88 rdf:type schema:PropertyValue
89 Nbee9f2bead0b467f82d50edadc567a99 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 Nc805cb93a507437e9d7e7d5bb91f7ad4 rdf:first Nd4629eaff18f4401981aa249afecdb08
92 rdf:rest Ncc3c60c11f6e458b80958b173433bc87
93 Ncc3c60c11f6e458b80958b173433bc87 rdf:first N914337e0791b4554bd9ac01b0e326b76
94 rdf:rest rdf:nil
95 Nd4629eaff18f4401981aa249afecdb08 schema:affiliation N746b87b8192c4f5db9bdb24c1bf248f7
96 schema:familyName Chen
97 schema:givenName Fengjiao
98 rdf:type schema:Person
99 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
100 schema:name Earth Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
103 schema:name Atmospheric Sciences
104 rdf:type schema:DefinedTerm
105 sg:journal.1136817 schema:issn 0033-4553
106 1420-9136
107 schema:name Pure and Applied Geophysics
108 rdf:type schema:Periodical
109 sg:pub.10.1007/978-90-481-2915-7_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170688
110 https://doi.org/10.1007/978-90-481-2915-7_1
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00376-015-5002-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004872341
113 https://doi.org/10.1007/s00376-015-5002-1
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00382-007-0260-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1005695037
116 https://doi.org/10.1007/s00382-007-0260-y
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11069-010-9508-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004742323
119 https://doi.org/10.1007/s11069-010-9508-7
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11430-015-5103-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043863713
122 https://doi.org/10.1007/s11430-015-5103-9
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature09763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028595909
125 https://doi.org/10.1038/nature09763
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/srep33044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017936174
128 https://doi.org/10.1038/srep33044
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/2013gl058499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045074758
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/hyp.9779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017076662
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.advwatres.2015.11.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039121069
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.atmosenv.2005.07.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005628747
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.atmosenv.2007.11.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027681218
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.atmosres.2011.10.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001556148
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.atmosres.2016.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029573758
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2003jd003497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024948139
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/2005jd006290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012024490
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1029/2005wr004398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047853
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1029/2007gl032437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008351249
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1029/2008jd011103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006208230
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2009jd011949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011982552
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1128845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012826834
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/2007jhm859.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011011397
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/2007jhm944.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013407610
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1175/2008bams2631.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034655434
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/2008jcli2028.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022822536
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1175/2008jcli2188.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030116175
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1175/2010jcli3454.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012334808
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1175/2010jcli3805.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044633317
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/bams-88-1-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046080823
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/jcli-d-12-00100.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030884887
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/jcli-d-15-0666.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455210
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/jhm-d-15-0059.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037672273
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/jhm-d-15-0081.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284460
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/jhm-d-16-0187.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084239638
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/jhm-d-16-0277.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091111968
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/jhm560.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018207213
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/jtech-d-12-00119.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036233440
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2151/jmsj.87a.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035768794
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3390/rs8020135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004748737
195 rdf:type schema:CreativeWork
196 https://doi.org/10.3390/rs8070544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359676
197 rdf:type schema:CreativeWork
198 https://doi.org/10.5194/acp-11-12421-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009986851
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5194/hess-15-1109-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031510855
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
203 schema:name Key Laboratory for Mesoscale Severe Weather/MOE, School of Atmospheric Sciences, Nanjing University, Nanjing, China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...