Effects of Climate Change on Soil Erosion Risk Assessed by Clustering and Artificial Neural Network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Zafer Aslan, Gokhan Erdemir, Enrico Feoli, Filippo Giorgi, Deniz Okcu

ABSTRACT

The erosivity index, as a combination of the Fournier index (FI) and the Bagnouls–Gaussen aridity index (BGI), has been suggested to assess soil erosion risk. It can be easily calculated from meteorological data, i.e., precipitation and temperature. As an example application, data from 55 meteorological stations in Turkey corresponding to a period of 39 years from 1975 to 2013 are considered herein. The stations were classified using cluster analysis to obtain a zonation of Turkey based on EI yearly averages. Clustering techniques were applied to a similarity matrix between stations obtained based on the complement of the probability of the similarity ratio index. Four clusters were defined according to the maximal evenness of the eigenvalues of the within each cluster similarity matrices corresponding to different hierarchical levels of the dendrograms. The probability of similarity was calculated using a permutation technique. Time series of the EI of the clusters were used to predict their annual average values for the years from 2014 to 2040 using a multilayer back-propagation neural network (MLPBP-NN). The results showed that the four clusters represent a gradient of increasing EI. The clusters corresponding to northern and central Turkey have lower EI values and EI variability than those for southern and western Turkey. The results of the MLPBP-NN predict that the erosion risk will increase for all zones, but with high increments in southern and western Turkey. Therefore, the regions corresponding to these clusters should be subjected to detailed soil erosion risk analysis. More... »

PAGES

937-949

References to SciGraph publications

  • 2017-12. Global rainfall erosivity assessment based on high-temporal resolution rainfall records in SCIENTIFIC REPORTS
  • 2013-08. Integrated Artificial Neural Network (ANN) and Stochastic Dynamic Programming (SDP) Model for Optimal Release Policy in WATER RESOURCES MANAGEMENT
  • 1996. Neural Networks, A Systematic Introduction in NONE
  • 2009. Desertification and Risk Analysis Using High and Medium Resolution Satellite Data, Training Workshop on Mapping Desertification in NONE
  • 2015-01. Mapping the risk of water erosion in the watershed of the Ningxia-Inner Mongolia reach of the Yellow River, China in JOURNAL OF MOUNTAIN SCIENCE
  • 2015-01. Rainfall and tillage impacts on soil erosion of sloping cropland with subtropical monsoon climate — A case study in hilly purple soil area, China in JOURNAL OF MOUNTAIN SCIENCE
  • 2006-02. Soil Erosion: A Food and Environmental Threat in ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY
  • 2014-06. Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images in PURE AND APPLIED GEOPHYSICS
  • 2007-03. Analysis of bioclimatic time series and their neural network-based classification to characterise drought risk patterns in South Italy in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2012-03. The relative importance of land use and climatic change in Alpine catchments in CLIMATIC CHANGE
  • 2012-04. Recent Climate Change at the Upper Danube—A temporal and spatial analysis of temperature and precipitation time series in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00024-018-2010-y

    DOI

    http://dx.doi.org/10.1007/s00024-018-2010-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107683346


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0503", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Soil Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Centre for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "Computer Engineering Department, Istanbul Ayd\u0131n University, 34295, Istanbul, Turkey", 
                "Abdus Salam International Centre for Theoretical Physics, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aslan", 
            "givenName": "Zafer", 
            "id": "sg:person.016313126113.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313126113.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Istanbul Sabahattin Zaim University", 
              "id": "https://www.grid.ac/institutes/grid.449308.2", 
              "name": [
                "Abdus Salam International Centre for Theoretical Physics, Trieste, Italy", 
                "Department of Electrical and Electronics Engineering, Istanbul Sabahattin Zaim University, Istanbul, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Erdemir", 
            "givenName": "Gokhan", 
            "id": "sg:person.010405435313.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405435313.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Trieste", 
              "id": "https://www.grid.ac/institutes/grid.5133.4", 
              "name": [
                "Department of Life Sciences, University of Trieste, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feoli", 
            "givenName": "Enrico", 
            "id": "sg:person.07610746163.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610746163.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Centre for Theoretical Physics", 
              "id": "https://www.grid.ac/institutes/grid.419330.c", 
              "name": [
                "Abdus Salam International Centre for Theoretical Physics, Trieste, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgi", 
            "givenName": "Filippo", 
            "id": "sg:person.012357172621.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012357172621.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kandilli Observatory and Earthquake Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.470089.2", 
              "name": [
                "Meteorology Laboratory, B.U. Kandilli Observatory and Earthquake Research Institute, 34684, Istanbul, \u00c7engelk\u00f6y, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okcu", 
            "givenName": "Deniz", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-61068-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006887216", 
              "https://doi.org/10.1007/978-3-642-61068-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61068-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006887216", 
              "https://doi.org/10.1007/978-3-642-61068-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2015.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007368199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gloplacha.2007.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008764402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1590/0001-3765201398012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009192221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1175/1525-7541(2003)4<317:eoasta>2.0.co;2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013853690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-006-0071-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016025754", 
              "https://doi.org/10.1007/s00484-006-0071-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-006-0071-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016025754", 
              "https://doi.org/10.1007/s00484-006-0071-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cageo.2010.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021579820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11269-013-0373-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021673992", 
              "https://doi.org/10.1007/s11269-013-0373-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.catena.2005.08.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027269098"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11629-014-3241-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034009467", 
              "https://doi.org/10.1007/s11629-014-3241-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0209-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034327338", 
              "https://doi.org/10.1007/s10584-011-0209-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1364-8152(03)00104-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034480377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1364-8152(03)00104-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034480377"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11629-013-2861-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035762522", 
              "https://doi.org/10.1007/s11629-013-2861-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-013-0669-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037221140", 
              "https://doi.org/10.1007/s00024-013-0669-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-013-0669-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037221140", 
              "https://doi.org/10.1007/s00024-013-0669-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0173-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047068879", 
              "https://doi.org/10.1007/s10584-011-0173-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2015.04.035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048402230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8937-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049624953", 
              "https://doi.org/10.1007/978-1-4020-8937-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4020-8937-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049624953", 
              "https://doi.org/10.1007/978-1-4020-8937-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10668-005-1262-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051288311", 
              "https://doi.org/10.1007/s10668-005-1262-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10668-005-1262-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051288311", 
              "https://doi.org/10.1007/s10668-005-1262-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1556/comec.10.2009.1.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067885400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1556/comec.10.2009.1.7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067885400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2136/sssaj2014.06.0259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069052763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2528688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069974446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jhydrol.2017.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084088693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-04282-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086124708", 
              "https://doi.org/10.1038/s41598-017-04282-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3390/w10020149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100853290"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "The erosivity index, as a combination of the Fournier index (FI) and the Bagnouls\u2013Gaussen aridity index (BGI), has been suggested to assess soil erosion risk. It can be easily calculated from meteorological data, i.e., precipitation and temperature. As an example application, data from 55 meteorological stations in Turkey corresponding to a period of 39 years from 1975 to 2013 are considered herein. The stations were classified using cluster analysis to obtain a zonation of Turkey based on EI yearly averages. Clustering techniques were applied to a similarity matrix between stations obtained based on the complement of the probability of the similarity ratio index. Four clusters were defined according to the maximal evenness of the eigenvalues of the within each cluster similarity matrices corresponding to different hierarchical levels of the dendrograms. The probability of similarity was calculated using a permutation technique. Time series of the EI of the clusters were used to predict their annual average values for the years from 2014 to 2040 using a multilayer back-propagation neural network (MLPBP-NN). The results showed that the four clusters represent a gradient of increasing EI. The clusters corresponding to northern and central Turkey have lower EI values and EI variability than those for southern and western Turkey. The results of the MLPBP-NN predict that the erosion risk will increase for all zones, but with high increments in southern and western Turkey. Therefore, the regions corresponding to these clusters should be subjected to detailed soil erosion risk analysis.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00024-018-2010-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136817", 
            "issn": [
              "0033-4553", 
              "1420-9136"
            ], 
            "name": "Pure and Applied Geophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "176"
          }
        ], 
        "name": "Effects of Climate Change on Soil Erosion Risk Assessed by Clustering and Artificial Neural Network", 
        "pagination": "937-949", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3c86cff769e7ffc97b04e77c89352c8aa7852a0b12e6af26fe11d99d0b08fc98"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00024-018-2010-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107683346"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00024-018-2010-y", 
          "https://app.dimensions.ai/details/publication/pub.1107683346"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000005.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00024-018-2010-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2010-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2010-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2010-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-018-2010-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    182 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00024-018-2010-y schema:about anzsrc-for:05
    2 anzsrc-for:0503
    3 schema:author N1a1b008e19664f429f6ef674460b5fa9
    4 schema:citation sg:pub.10.1007/978-1-4020-8937-4
    5 sg:pub.10.1007/978-3-642-61068-4
    6 sg:pub.10.1007/s00024-013-0669-7
    7 sg:pub.10.1007/s00484-006-0071-6
    8 sg:pub.10.1007/s10584-011-0173-y
    9 sg:pub.10.1007/s10584-011-0209-3
    10 sg:pub.10.1007/s10668-005-1262-8
    11 sg:pub.10.1007/s11269-013-0373-5
    12 sg:pub.10.1007/s11629-013-2861-8
    13 sg:pub.10.1007/s11629-014-3241-8
    14 sg:pub.10.1038/s41598-017-04282-8
    15 https://doi.org/10.1016/j.cageo.2010.11.013
    16 https://doi.org/10.1016/j.catena.2005.08.003
    17 https://doi.org/10.1016/j.gloplacha.2007.09.005
    18 https://doi.org/10.1016/j.jhydrol.2015.04.027
    19 https://doi.org/10.1016/j.jhydrol.2015.04.035
    20 https://doi.org/10.1016/j.jhydrol.2017.03.006
    21 https://doi.org/10.1016/s1364-8152(03)00104-x
    22 https://doi.org/10.1175/1525-7541(2003)4<317:eoasta>2.0.co;2
    23 https://doi.org/10.1556/comec.10.2009.1.7
    24 https://doi.org/10.1590/0001-3765201398012
    25 https://doi.org/10.2136/sssaj2014.06.0259
    26 https://doi.org/10.2307/2528688
    27 https://doi.org/10.3390/w10020149
    28 schema:datePublished 2019-02
    29 schema:datePublishedReg 2019-02-01
    30 schema:description The erosivity index, as a combination of the Fournier index (FI) and the Bagnouls–Gaussen aridity index (BGI), has been suggested to assess soil erosion risk. It can be easily calculated from meteorological data, i.e., precipitation and temperature. As an example application, data from 55 meteorological stations in Turkey corresponding to a period of 39 years from 1975 to 2013 are considered herein. The stations were classified using cluster analysis to obtain a zonation of Turkey based on EI yearly averages. Clustering techniques were applied to a similarity matrix between stations obtained based on the complement of the probability of the similarity ratio index. Four clusters were defined according to the maximal evenness of the eigenvalues of the within each cluster similarity matrices corresponding to different hierarchical levels of the dendrograms. The probability of similarity was calculated using a permutation technique. Time series of the EI of the clusters were used to predict their annual average values for the years from 2014 to 2040 using a multilayer back-propagation neural network (MLPBP-NN). The results showed that the four clusters represent a gradient of increasing EI. The clusters corresponding to northern and central Turkey have lower EI values and EI variability than those for southern and western Turkey. The results of the MLPBP-NN predict that the erosion risk will increase for all zones, but with high increments in southern and western Turkey. Therefore, the regions corresponding to these clusters should be subjected to detailed soil erosion risk analysis.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf Nc954f1a48df848a8aaadbb3326d36cd3
    35 Ne7a7b34559714c18a674ace29dec041f
    36 sg:journal.1136817
    37 schema:name Effects of Climate Change on Soil Erosion Risk Assessed by Clustering and Artificial Neural Network
    38 schema:pagination 937-949
    39 schema:productId N25379e53036e4a5ea2a790d4fe5fe4e8
    40 N272861e2f0564583b1ece75a8cb8eedf
    41 N633409c7b89d4192bfddc3b6a78a3787
    42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107683346
    43 https://doi.org/10.1007/s00024-018-2010-y
    44 schema:sdDatePublished 2019-04-11T10:39
    45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    46 schema:sdPublisher N14e6bef48e4141c58d8faba4a30c79d2
    47 schema:url https://link.springer.com/10.1007%2Fs00024-018-2010-y
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset articles
    50 rdf:type schema:ScholarlyArticle
    51 N14e6bef48e4141c58d8faba4a30c79d2 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N1a1b008e19664f429f6ef674460b5fa9 rdf:first sg:person.016313126113.77
    54 rdf:rest N9e926773c5244e9c914cb57fc1b1b8a7
    55 N1f238ec5aebd45beba23b5913eec05ca rdf:first sg:person.07610746163.15
    56 rdf:rest N677f96e6dbfd4ed285d732a5cbb9f60e
    57 N25379e53036e4a5ea2a790d4fe5fe4e8 schema:name dimensions_id
    58 schema:value pub.1107683346
    59 rdf:type schema:PropertyValue
    60 N272861e2f0564583b1ece75a8cb8eedf schema:name readcube_id
    61 schema:value 3c86cff769e7ffc97b04e77c89352c8aa7852a0b12e6af26fe11d99d0b08fc98
    62 rdf:type schema:PropertyValue
    63 N4283d9f859c8410f8adb6bbfe67fcb40 rdf:first Nee900f99f0954f6eacfa960470cf919d
    64 rdf:rest rdf:nil
    65 N633409c7b89d4192bfddc3b6a78a3787 schema:name doi
    66 schema:value 10.1007/s00024-018-2010-y
    67 rdf:type schema:PropertyValue
    68 N677f96e6dbfd4ed285d732a5cbb9f60e rdf:first sg:person.012357172621.01
    69 rdf:rest N4283d9f859c8410f8adb6bbfe67fcb40
    70 N9e926773c5244e9c914cb57fc1b1b8a7 rdf:first sg:person.010405435313.40
    71 rdf:rest N1f238ec5aebd45beba23b5913eec05ca
    72 Nc954f1a48df848a8aaadbb3326d36cd3 schema:volumeNumber 176
    73 rdf:type schema:PublicationVolume
    74 Ne7a7b34559714c18a674ace29dec041f schema:issueNumber 2
    75 rdf:type schema:PublicationIssue
    76 Nee900f99f0954f6eacfa960470cf919d schema:affiliation https://www.grid.ac/institutes/grid.470089.2
    77 schema:familyName Okcu
    78 schema:givenName Deniz
    79 rdf:type schema:Person
    80 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Environmental Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0503 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Soil Sciences
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1136817 schema:issn 0033-4553
    87 1420-9136
    88 schema:name Pure and Applied Geophysics
    89 rdf:type schema:Periodical
    90 sg:person.010405435313.40 schema:affiliation https://www.grid.ac/institutes/grid.449308.2
    91 schema:familyName Erdemir
    92 schema:givenName Gokhan
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405435313.40
    94 rdf:type schema:Person
    95 sg:person.012357172621.01 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
    96 schema:familyName Giorgi
    97 schema:givenName Filippo
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012357172621.01
    99 rdf:type schema:Person
    100 sg:person.016313126113.77 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
    101 schema:familyName Aslan
    102 schema:givenName Zafer
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016313126113.77
    104 rdf:type schema:Person
    105 sg:person.07610746163.15 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
    106 schema:familyName Feoli
    107 schema:givenName Enrico
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610746163.15
    109 rdf:type schema:Person
    110 sg:pub.10.1007/978-1-4020-8937-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049624953
    111 https://doi.org/10.1007/978-1-4020-8937-4
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/978-3-642-61068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006887216
    114 https://doi.org/10.1007/978-3-642-61068-4
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/s00024-013-0669-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037221140
    117 https://doi.org/10.1007/s00024-013-0669-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/s00484-006-0071-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025754
    120 https://doi.org/10.1007/s00484-006-0071-6
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/s10584-011-0173-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1047068879
    123 https://doi.org/10.1007/s10584-011-0173-y
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s10584-011-0209-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034327338
    126 https://doi.org/10.1007/s10584-011-0209-3
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10668-005-1262-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051288311
    129 https://doi.org/10.1007/s10668-005-1262-8
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11269-013-0373-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021673992
    132 https://doi.org/10.1007/s11269-013-0373-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11629-013-2861-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035762522
    135 https://doi.org/10.1007/s11629-013-2861-8
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11629-014-3241-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034009467
    138 https://doi.org/10.1007/s11629-014-3241-8
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/s41598-017-04282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086124708
    141 https://doi.org/10.1038/s41598-017-04282-8
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/j.cageo.2010.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021579820
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/j.catena.2005.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027269098
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/j.gloplacha.2007.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008764402
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.jhydrol.2015.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007368199
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.jhydrol.2015.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048402230
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.jhydrol.2017.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084088693
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/s1364-8152(03)00104-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034480377
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1175/1525-7541(2003)4<317:eoasta>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013853690
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1556/comec.10.2009.1.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067885400
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1590/0001-3765201398012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009192221
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.2136/sssaj2014.06.0259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069052763
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.2307/2528688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974446
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.3390/w10020149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100853290
    168 rdf:type schema:CreativeWork
    169 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
    170 schema:name Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
    171 Computer Engineering Department, Istanbul Aydın University, 34295, Istanbul, Turkey
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.449308.2 schema:alternateName Istanbul Sabahattin Zaim University
    174 schema:name Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
    175 Department of Electrical and Electronics Engineering, Istanbul Sabahattin Zaim University, Istanbul, Turkey
    176 rdf:type schema:Organization
    177 https://www.grid.ac/institutes/grid.470089.2 schema:alternateName Kandilli Observatory and Earthquake Research Institute
    178 schema:name Meteorology Laboratory, B.U. Kandilli Observatory and Earthquake Research Institute, 34684, Istanbul, Çengelköy, Turkey
    179 rdf:type schema:Organization
    180 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
    181 schema:name Department of Life Sciences, University of Trieste, Trieste, Italy
    182 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...