Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09

AUTHORS

Marc S. Adams, Yves Bühler, Reinhard Fromm

ABSTRACT

Reliable and timely information on the spatio-temporal distribution of snow in alpine terrain plays an important role for a wide range of applications. Unmanned aerial system (UAS) photogrammetry is increasingly applied to cost-efficiently map the snow depth at very high resolution with flexible applicability. However, crucial questions regarding quality and repeatability of this technique are still under discussion. Here we present a multitemporal accuracy and precision assessment of UAS photogrammetry for snow depth mapping on the slope-scale. We mapped a 0.12 km2 large snow-covered study site, located in a high-alpine valley in Western Austria. 12 UAS flights were performed to acquire imagery at 0.05 m ground sampling distance in visible (VIS) and near-infrared (NIR) wavelengths with a modified commercial, off-the-shelf sensor mounted on a custom-built fixed-wing UAS. The imagery was processed with structure-from-motion photogrammetry software to generate orthophotos, digital surface models (DSMs) and snow depth maps (SDMs). Accuracy of DSMs and SDMs were assessed with terrestrial laser scanning and manual snow depth probing, respectively. The results show that under good illumination conditions (study site in full sunlight), the DSMs and SDMs were acquired with an accuracy of ≤ 0.25 and ≤ 0.29 m (both at 1σ), respectively. In case of poorly illuminated snow surfaces (study site shadowed), the NIR imagery provided higher accuracy (0.19 m; 0.23 m) than VIS imagery (0.49 m; 0.37 m). The precision of the UASSDMs was 0.04 m for a small, stable area and below 0.33 m for the whole study site (both at 1σ). More... »

PAGES

3303-3324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00024-017-1748-y

DOI

http://dx.doi.org/10.1007/s00024-017-1748-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099698772


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Austrian Research Centre for Forests", 
          "id": "https://www.grid.ac/institutes/grid.425121.1", 
          "name": [
            "Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Hofburg Rennweg 1, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adams", 
        "givenName": "Marc S.", 
        "id": "sg:person.012313703211.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012313703211.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute for Forest, Snow and Landscape Research", 
          "id": "https://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "WSL Institute for Snow and Avalanche Research SLF, Fl\u00fcelastrasse 11, 7260, Davos Dorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00fchler", 
        "givenName": "Yves", 
        "id": "sg:person.01226317747.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226317747.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Austrian Research Centre for Forests", 
          "id": "https://www.grid.ac/institutes/grid.425121.1", 
          "name": [
            "Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Hofburg Rennweg 1, 6020, Innsbruck, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fromm", 
        "givenName": "Reinhard", 
        "id": "sg:person.012713056755.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713056755.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11069-006-9031-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000919910", 
          "https://doi.org/10.1007/s11069-006-9031-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/jcoastres-d-15-00005.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001791192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2014.07.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002277884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2011.640964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002295020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2015.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002920649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/91wr00506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002994763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-9-1445-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005092940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/2015jog15j031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005869316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12145-013-0142-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008505973", 
          "https://doi.org/10.1007/s12145-013-0142-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jag.2006.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009129405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00442-012-2549-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009508007", 
          "https://doi.org/10.1007/s00442-012-2549-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12518-013-0120-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010901465", 
          "https://doi.org/10.1007/s12518-013-0120-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2008.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011279762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011573413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011573413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011573413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-10-2559-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012597018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1793::aid-hyp695>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012792273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1793::aid-hyp695>3.0.co;2-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012792273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/geosciences5030264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/2013jog12j154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017276445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.earth.32.101802.120404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018003547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-4-215-2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018198674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018835955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2486.2010.02210.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018835955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2013.12.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021035431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/juvs-2014-0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021641543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70911933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024457892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jweia.2004.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026471703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2009.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026999304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-10-1361-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028461270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs5126880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031141338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2005.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-006-9025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033691404", 
          "https://doi.org/10.1007/s11069-006-9025-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/2015jog14j168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035551858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13658810500286976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036749451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2014.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037804093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97wr03755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039050997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2014.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039129304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-9-523-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039238724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040926329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2015.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041930439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-14-2233-2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043480680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsarchives-xl-1-w2-157-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70201736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047576008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2014.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047676366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/172756408787814726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047978045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(00)00111-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048302219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2014.2363237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049162849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geomorph.2013.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049759739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2008.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050853598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2010.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051378704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1369-4332.17.3.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064582284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1260/1369-4332.17.3.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064582284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.8.000377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065166532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3189/002214311796406077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071116761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprs-archives-xli-b1-893-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072674526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprs-archives-xli-b1-917-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072674530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/isprsarchives-xli-b8-453-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072676904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-10-1075-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072680535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-10-511-2016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072680638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coldregions.2017.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084066925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/tc-2017-57", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085053927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01431161.2016.1275060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087288427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2009.5206868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094337834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1553/ess-01s1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099058798"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Reliable and timely information on the spatio-temporal distribution of snow in alpine terrain plays an important role for a wide range of applications. Unmanned aerial system (UAS) photogrammetry is increasingly applied to cost-efficiently map the snow depth at very high resolution with flexible applicability. However, crucial questions regarding quality and repeatability of this technique are still under discussion. Here we present a multitemporal accuracy and precision assessment of UAS photogrammetry for snow depth mapping on the slope-scale. We mapped a 0.12 km2 large snow-covered study site, located in a high-alpine valley in Western Austria. 12 UAS flights were performed to acquire imagery at 0.05 m ground sampling distance in visible (VIS) and near-infrared (NIR) wavelengths with a modified commercial, off-the-shelf sensor mounted on a custom-built fixed-wing UAS. The imagery was processed with structure-from-motion photogrammetry software to generate orthophotos, digital surface models (DSMs) and snow depth maps (SDMs). Accuracy of DSMs and SDMs were assessed with terrestrial laser scanning and manual snow depth probing, respectively. The results show that under good illumination conditions (study site in full sunlight), the DSMs and SDMs were acquired with an accuracy of \u2264 0.25 and \u2264 0.29 m (both at 1\u03c3), respectively. In case of poorly illuminated snow surfaces (study site shadowed), the NIR imagery provided higher accuracy (0.19 m; 0.23 m) than VIS imagery (0.49 m; 0.37 m). The precision of the UASSDMs was 0.04 m for a small, stable area and below 0.33 m for the whole study site (both at 1\u03c3).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00024-017-1748-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136817", 
        "issn": [
          "0033-4553", 
          "1420-9136"
        ], 
        "name": "Pure and Applied Geophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "175"
      }
    ], 
    "name": "Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain", 
    "pagination": "3303-3324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8ff56c92b3538683af5c61961379a7e065645abee8b04941917d92c6c0f09794"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00024-017-1748-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099698772"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00024-017-1748-y", 
      "https://app.dimensions.ai/details/publication/pub.1099698772"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00024-017-1748-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1748-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1748-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1748-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1748-y'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      88 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00024-017-1748-y schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Nf18a48a1173e40c8aa9dce4b0d839ebd
4 schema:citation sg:pub.10.1007/s00442-012-2549-8
5 sg:pub.10.1007/s11069-006-9025-x
6 sg:pub.10.1007/s11069-006-9031-z
7 sg:pub.10.1007/s12145-013-0142-2
8 sg:pub.10.1007/s12518-013-0120-x
9 https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1793::aid-hyp695>3.0.co;2-k
10 https://doi.org/10.1002/arp.399
11 https://doi.org/10.1016/j.coldregions.2005.05.008
12 https://doi.org/10.1016/j.coldregions.2008.07.002
13 https://doi.org/10.1016/j.coldregions.2008.07.007
14 https://doi.org/10.1016/j.coldregions.2010.04.013
15 https://doi.org/10.1016/j.coldregions.2015.04.010
16 https://doi.org/10.1016/j.coldregions.2015.07.001
17 https://doi.org/10.1016/j.coldregions.2017.03.006
18 https://doi.org/10.1016/j.geomorph.2013.03.023
19 https://doi.org/10.1016/j.geomorph.2014.07.021
20 https://doi.org/10.1016/j.isprsjprs.2009.02.003
21 https://doi.org/10.1016/j.isprsjprs.2014.02.013
22 https://doi.org/10.1016/j.isprsjprs.2014.09.015
23 https://doi.org/10.1016/j.jag.2006.10.001
24 https://doi.org/10.1016/j.jhydrol.2013.12.054
25 https://doi.org/10.1016/j.jweia.2004.03.011
26 https://doi.org/10.1016/j.rse.2014.04.025
27 https://doi.org/10.1016/j.rse.2016.06.018
28 https://doi.org/10.1016/s0034-4257(00)00111-5
29 https://doi.org/10.1029/91wr00506
30 https://doi.org/10.1029/97wr03755
31 https://doi.org/10.1080/01431161.2011.640964
32 https://doi.org/10.1080/01431161.2016.1275060
33 https://doi.org/10.1080/13658810500286976
34 https://doi.org/10.1109/cvpr.2009.5206868
35 https://doi.org/10.1109/lgrs.2014.2363237
36 https://doi.org/10.1111/j.1365-2486.2010.02210.x
37 https://doi.org/10.1139/juvs-2014-0006
38 https://doi.org/10.1146/annurev.earth.32.101802.120404
39 https://doi.org/10.1260/1369-4332.17.3.289
40 https://doi.org/10.1364/josaa.8.000377
41 https://doi.org/10.1553/ess-01s1
42 https://doi.org/10.2112/jcoastres-d-15-00005.1
43 https://doi.org/10.3189/002214311796406077
44 https://doi.org/10.3189/172756408787814726
45 https://doi.org/10.3189/2013jog12j154
46 https://doi.org/10.3189/2015jog14j168
47 https://doi.org/10.3189/2015jog15j031
48 https://doi.org/10.3390/geosciences5030264
49 https://doi.org/10.3390/rs5126880
50 https://doi.org/10.3390/rs70201736
51 https://doi.org/10.3390/rs70911933
52 https://doi.org/10.5194/isprs-archives-xli-b1-893-2016
53 https://doi.org/10.5194/isprs-archives-xli-b1-917-2016
54 https://doi.org/10.5194/isprsarchives-xl-1-w2-157-2013
55 https://doi.org/10.5194/isprsarchives-xli-b8-453-2016
56 https://doi.org/10.5194/nhess-14-2233-2014
57 https://doi.org/10.5194/nhess-9-523-2009
58 https://doi.org/10.5194/tc-10-1075-2016
59 https://doi.org/10.5194/tc-10-1361-2016
60 https://doi.org/10.5194/tc-10-2559-2016
61 https://doi.org/10.5194/tc-10-511-2016
62 https://doi.org/10.5194/tc-2017-57
63 https://doi.org/10.5194/tc-4-215-2010
64 https://doi.org/10.5194/tc-9-1445-2015
65 schema:datePublished 2018-09
66 schema:datePublishedReg 2018-09-01
67 schema:description Reliable and timely information on the spatio-temporal distribution of snow in alpine terrain plays an important role for a wide range of applications. Unmanned aerial system (UAS) photogrammetry is increasingly applied to cost-efficiently map the snow depth at very high resolution with flexible applicability. However, crucial questions regarding quality and repeatability of this technique are still under discussion. Here we present a multitemporal accuracy and precision assessment of UAS photogrammetry for snow depth mapping on the slope-scale. We mapped a 0.12 km2 large snow-covered study site, located in a high-alpine valley in Western Austria. 12 UAS flights were performed to acquire imagery at 0.05 m ground sampling distance in visible (VIS) and near-infrared (NIR) wavelengths with a modified commercial, off-the-shelf sensor mounted on a custom-built fixed-wing UAS. The imagery was processed with structure-from-motion photogrammetry software to generate orthophotos, digital surface models (DSMs) and snow depth maps (SDMs). Accuracy of DSMs and SDMs were assessed with terrestrial laser scanning and manual snow depth probing, respectively. The results show that under good illumination conditions (study site in full sunlight), the DSMs and SDMs were acquired with an accuracy of ≤ 0.25 and ≤ 0.29 m (both at 1σ), respectively. In case of poorly illuminated snow surfaces (study site shadowed), the NIR imagery provided higher accuracy (0.19 m; 0.23 m) than VIS imagery (0.49 m; 0.37 m). The precision of the UASSDMs was 0.04 m for a small, stable area and below 0.33 m for the whole study site (both at 1σ).
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf N8d66f332de8745b6907100ca99596eee
72 Nd2963352a3984cf6b607035c89aba45f
73 sg:journal.1136817
74 schema:name Multitemporal Accuracy and Precision Assessment of Unmanned Aerial System Photogrammetry for Slope-Scale Snow Depth Maps in Alpine Terrain
75 schema:pagination 3303-3324
76 schema:productId Nc71453ba63bb4ede9ada091f1aa752f6
77 Ne0b1ad1be0ef4eaaae2fe7f4a24cfd3f
78 Nfa6d654b31464c548a9901bfa76e984a
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099698772
80 https://doi.org/10.1007/s00024-017-1748-y
81 schema:sdDatePublished 2019-04-10T14:14
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N01efeca040d543369b5c51b357b829d6
84 schema:url http://link.springer.com/10.1007%2Fs00024-017-1748-y
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N01efeca040d543369b5c51b357b829d6 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N8d66f332de8745b6907100ca99596eee schema:volumeNumber 175
91 rdf:type schema:PublicationVolume
92 N8ff5f7aa70624fb3b6f01a3946731d9d rdf:first sg:person.01226317747.98
93 rdf:rest Ncf2b91e03dcd40b1b9804d05388ccd0d
94 Nc71453ba63bb4ede9ada091f1aa752f6 schema:name doi
95 schema:value 10.1007/s00024-017-1748-y
96 rdf:type schema:PropertyValue
97 Ncf2b91e03dcd40b1b9804d05388ccd0d rdf:first sg:person.012713056755.03
98 rdf:rest rdf:nil
99 Nd2963352a3984cf6b607035c89aba45f schema:issueNumber 9
100 rdf:type schema:PublicationIssue
101 Ne0b1ad1be0ef4eaaae2fe7f4a24cfd3f schema:name dimensions_id
102 schema:value pub.1099698772
103 rdf:type schema:PropertyValue
104 Nf18a48a1173e40c8aa9dce4b0d839ebd rdf:first sg:person.012313703211.29
105 rdf:rest N8ff5f7aa70624fb3b6f01a3946731d9d
106 Nfa6d654b31464c548a9901bfa76e984a schema:name readcube_id
107 schema:value 8ff56c92b3538683af5c61961379a7e065645abee8b04941917d92c6c0f09794
108 rdf:type schema:PropertyValue
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
113 schema:name Geomatic Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1136817 schema:issn 0033-4553
116 1420-9136
117 schema:name Pure and Applied Geophysics
118 rdf:type schema:Periodical
119 sg:person.01226317747.98 schema:affiliation https://www.grid.ac/institutes/grid.419754.a
120 schema:familyName Bühler
121 schema:givenName Yves
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226317747.98
123 rdf:type schema:Person
124 sg:person.012313703211.29 schema:affiliation https://www.grid.ac/institutes/grid.425121.1
125 schema:familyName Adams
126 schema:givenName Marc S.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012313703211.29
128 rdf:type schema:Person
129 sg:person.012713056755.03 schema:affiliation https://www.grid.ac/institutes/grid.425121.1
130 schema:familyName Fromm
131 schema:givenName Reinhard
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713056755.03
133 rdf:type schema:Person
134 sg:pub.10.1007/s00442-012-2549-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009508007
135 https://doi.org/10.1007/s00442-012-2549-8
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11069-006-9025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033691404
138 https://doi.org/10.1007/s11069-006-9025-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11069-006-9031-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000919910
141 https://doi.org/10.1007/s11069-006-9031-z
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s12145-013-0142-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008505973
144 https://doi.org/10.1007/s12145-013-0142-2
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s12518-013-0120-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010901465
147 https://doi.org/10.1007/s12518-013-0120-x
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/(sici)1099-1085(199808/09)12:10/11<1793::aid-hyp695>3.0.co;2-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1012792273
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/arp.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040926329
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.coldregions.2005.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155912
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.coldregions.2008.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050853598
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.coldregions.2008.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011279762
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.coldregions.2010.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051378704
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.coldregions.2015.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002920649
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.coldregions.2015.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041930439
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.coldregions.2017.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084066925
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.geomorph.2013.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049759739
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.geomorph.2014.07.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002277884
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.isprsjprs.2009.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026999304
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.isprsjprs.2014.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039129304
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.isprsjprs.2014.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037804093
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jag.2006.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009129405
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jhydrol.2013.12.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021035431
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jweia.2004.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026471703
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.rse.2014.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047676366
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.rse.2016.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011573413
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0034-4257(00)00111-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048302219
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1029/91wr00506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002994763
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1029/97wr03755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039050997
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1080/01431161.2011.640964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002295020
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/01431161.2016.1275060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087288427
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1080/13658810500286976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036749451
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/cvpr.2009.5206868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094337834
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/lgrs.2014.2363237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049162849
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1111/j.1365-2486.2010.02210.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018835955
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1139/juvs-2014-0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021641543
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev.earth.32.101802.120404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018003547
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1260/1369-4332.17.3.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064582284
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1364/josaa.8.000377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065166532
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1553/ess-01s1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099058798
214 rdf:type schema:CreativeWork
215 https://doi.org/10.2112/jcoastres-d-15-00005.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001791192
216 rdf:type schema:CreativeWork
217 https://doi.org/10.3189/002214311796406077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071116761
218 rdf:type schema:CreativeWork
219 https://doi.org/10.3189/172756408787814726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047978045
220 rdf:type schema:CreativeWork
221 https://doi.org/10.3189/2013jog12j154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017276445
222 rdf:type schema:CreativeWork
223 https://doi.org/10.3189/2015jog14j168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035551858
224 rdf:type schema:CreativeWork
225 https://doi.org/10.3189/2015jog15j031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005869316
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3390/geosciences5030264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163357
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3390/rs5126880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031141338
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3390/rs70201736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047576008
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3390/rs70911933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024457892
234 rdf:type schema:CreativeWork
235 https://doi.org/10.5194/isprs-archives-xli-b1-893-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072674526
236 rdf:type schema:CreativeWork
237 https://doi.org/10.5194/isprs-archives-xli-b1-917-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072674530
238 rdf:type schema:CreativeWork
239 https://doi.org/10.5194/isprsarchives-xl-1-w2-157-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275806
240 rdf:type schema:CreativeWork
241 https://doi.org/10.5194/isprsarchives-xli-b8-453-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072676904
242 rdf:type schema:CreativeWork
243 https://doi.org/10.5194/nhess-14-2233-2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480680
244 rdf:type schema:CreativeWork
245 https://doi.org/10.5194/nhess-9-523-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039238724
246 rdf:type schema:CreativeWork
247 https://doi.org/10.5194/tc-10-1075-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072680535
248 rdf:type schema:CreativeWork
249 https://doi.org/10.5194/tc-10-1361-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028461270
250 rdf:type schema:CreativeWork
251 https://doi.org/10.5194/tc-10-2559-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012597018
252 rdf:type schema:CreativeWork
253 https://doi.org/10.5194/tc-10-511-2016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072680638
254 rdf:type schema:CreativeWork
255 https://doi.org/10.5194/tc-2017-57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085053927
256 rdf:type schema:CreativeWork
257 https://doi.org/10.5194/tc-4-215-2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018198674
258 rdf:type schema:CreativeWork
259 https://doi.org/10.5194/tc-9-1445-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005092940
260 rdf:type schema:CreativeWork
261 https://www.grid.ac/institutes/grid.419754.a schema:alternateName Swiss Federal Institute for Forest, Snow and Landscape Research
262 schema:name WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
263 rdf:type schema:Organization
264 https://www.grid.ac/institutes/grid.425121.1 schema:alternateName Austrian Research Centre for Forests
265 schema:name Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Hofburg Rennweg 1, 6020, Innsbruck, Austria
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...