Numerical Simulation of Wave Characteristics off Kulasekharapatnam, Southeast Coast of India View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-10

AUTHORS

Umesh P. A, Selvin P. Kani, Prasad K. Bhaskaran

ABSTRACT

Waves are important driving forces that have significant implications in deep and shallow waters. To achieve further understanding of the characteristics of wind waves in the Gulf of Mannar, an attempt is made based on the measured data off Kulasekharapatnam for the period from January 2006 to May 2007. The integrated third-generation ocean wave models, WAM and SWAN, are implemented to simulate the significant wave parameters. Simulations were carried out using ECMWF ERA-Interim winds over the deep waters (30°E–120°E; 70°S–30°N and 76°E–80°E; 6°N–10°N) domains. Comparison of the ECMWF ERA-Interim wind data against the field measured data demonstrates that the overall trend and dominant directions are consistent with the observational data. The validation of significant wave parameters exhibited very high correlation (R > 0.9) at the study location. Wave heights are high in the Gulf of Mannar during the southwest monsoon period and the waves are from south-southwest. The study also shows that swells are predominant (24%) in the Gulf of Mannar during non-monsoon period and during rest of the year, wind sea (75.9%) dominates. The study also demonstrates the sensitivity of the SWAN model towards different GEN3 physics options and bottom friction formulations by forcing the model with QuikSCAT/NCEP Blended winds off Kulasekharapatnam. The simulations obtained using different GEN3 physics options and bottom friction formulations have been compared with the buoy data. The study indicates that the SWAN model with Janssen and Komen physics options simulates the significant wave height and mean wave period, respectively, with a fairly high degree of accuracy. Similarly, the JONSWAP formulation for bottom friction reproduced the buoy signals at the study location with good accuracy for both significant wave height and mean wave period. The study demonstrates that the simulations are sensitive to the choice of GEN3 physics and bottom friction formulations off Kulasekharapatnam, and hence effective for obtaining more accurate wave predictions. More... »

PAGES

3979-4001

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00024-017-1599-6

DOI

http://dx.doi.org/10.1007/s00024-017-1599-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090295848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, 721 302, Kharagpur, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P. A", 
        "givenName": "Umesh", 
        "id": "sg:person.012011433523.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011433523.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Environmental Studies & Wetland Management", 
          "id": "https://www.grid.ac/institutes/grid.464850.b", 
          "name": [
            "Integrated Coastal Zone Management Project, Institute of Environmental Studies and Wetland Management, Sector-1, Salt Lake City, 700 064, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kani", 
        "givenName": "Selvin P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kharagpur", 
          "id": "https://www.grid.ac/institutes/grid.429017.9", 
          "name": [
            "Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, 721 302, Kharagpur, West Bengal, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhaskaran", 
        "givenName": "Prasad K.", 
        "id": "sg:person.015360732105.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360732105.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000085744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jtecho609.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000938693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-008-9293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001484293", 
          "https://doi.org/10.1007/s11069-008-9293-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2006.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001594838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1755876x.2016.1182792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002394997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6105(88)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007384045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6105(88)90011-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007384045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2008.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007824732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009755320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2005.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csr.2005.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(2001)018<2052:aomfsw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011143494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011849757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc077i015p02693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013481669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oceaneng.2013.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014755562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jtech1707.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016889924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001gl013587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021343551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2665-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024911621", 
          "https://doi.org/10.1007/978-1-4757-2665-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2665-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024911621", 
          "https://doi.org/10.1007/978-1-4757-2665-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3839(00)00033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025450601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/ijnaoe-2015-0065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025736525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coastaleng.2005.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032240730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apor.2009.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037091496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmarsys.2004.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047057301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048477459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/04-0173.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053175338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98jc02622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053607037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1998jc900045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053655144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/si65-059.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068922125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2112/si65-065.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068922131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/9780872626874.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1097233425"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10", 
    "datePublishedReg": "2017-10-01", 
    "description": "Waves are important driving forces that have significant implications in deep and shallow waters. To achieve further understanding of the characteristics of wind waves in the Gulf of Mannar, an attempt is made based on the measured data off Kulasekharapatnam for the period from January 2006 to May 2007. The integrated third-generation ocean wave models, WAM and SWAN, are implemented to simulate the significant wave parameters. Simulations were carried out using ECMWF ERA-Interim winds over the deep waters (30\u00b0E\u2013120\u00b0E; 70\u00b0S\u201330\u00b0N and 76\u00b0E\u201380\u00b0E; 6\u00b0N\u201310\u00b0N) domains. Comparison of the ECMWF ERA-Interim wind data against the field measured data demonstrates that the overall trend and dominant directions are consistent with the observational data. The validation of significant wave parameters exhibited very high correlation (R > 0.9) at the study location. Wave heights are high in the Gulf of Mannar during the southwest monsoon period and the waves are from south-southwest. The study also shows that swells are predominant (24%) in the Gulf of Mannar during non-monsoon period and during rest of the year, wind sea (75.9%) dominates. The study also demonstrates the sensitivity of the SWAN model towards different GEN3 physics options and bottom friction formulations by forcing the model with QuikSCAT/NCEP Blended winds off Kulasekharapatnam. The simulations obtained using different GEN3 physics options and bottom friction formulations have been compared with the buoy data. The study indicates that the SWAN model with Janssen and Komen physics options simulates the significant wave height and mean wave period, respectively, with a fairly high degree of accuracy. Similarly, the JONSWAP formulation for bottom friction reproduced the buoy signals at the study location with good accuracy for both significant wave height and mean wave period. The study demonstrates that the simulations are sensitive to the choice of GEN3 physics and bottom friction formulations off Kulasekharapatnam, and hence effective for obtaining more accurate wave predictions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00024-017-1599-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136817", 
        "issn": [
          "0033-4553", 
          "1420-9136"
        ], 
        "name": "Pure and Applied Geophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "174"
      }
    ], 
    "name": "Numerical Simulation of Wave Characteristics off Kulasekharapatnam, Southeast Coast of India", 
    "pagination": "3979-4001", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "579e507ebc3a7059256b2819fc9cee3ae9f937260a72a24397050c732fae03fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00024-017-1599-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090295848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00024-017-1599-6", 
      "https://app.dimensions.ai/details/publication/pub.1090295848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00024-017-1599-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1599-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1599-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1599-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-017-1599-6'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00024-017-1599-6 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Nb127220aaded4907977e5a55ec241e0c
4 schema:citation sg:pub.10.1007/978-1-4757-2665-7
5 sg:pub.10.1007/s11069-008-9293-8
6 https://doi.org/10.1002/qj.828
7 https://doi.org/10.1016/0167-6105(88)90011-6
8 https://doi.org/10.1016/j.apor.2009.10.005
9 https://doi.org/10.1016/j.coastaleng.2005.12.006
10 https://doi.org/10.1016/j.coastaleng.2008.02.027
11 https://doi.org/10.1016/j.csr.2005.08.027
12 https://doi.org/10.1016/j.jmarsys.2004.03.006
13 https://doi.org/10.1016/j.oceaneng.2006.02.008
14 https://doi.org/10.1016/j.oceaneng.2013.02.010
15 https://doi.org/10.1016/s0378-3839(00)00033-8
16 https://doi.org/10.1029/1998jc900045
17 https://doi.org/10.1029/2001gl013587
18 https://doi.org/10.1029/98jc02622
19 https://doi.org/10.1029/jc077i015p02693
20 https://doi.org/10.1061/9780872626874.035
21 https://doi.org/10.1080/1755876x.2016.1182792
22 https://doi.org/10.1175/1520-0426(2001)018<2052:aomfsw>2.0.co;2
23 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
24 https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2
25 https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
26 https://doi.org/10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2
27 https://doi.org/10.1175/2008jtecho609.1
28 https://doi.org/10.1175/jtech1707.1
29 https://doi.org/10.1515/ijnaoe-2015-0065
30 https://doi.org/10.2112/04-0173.1
31 https://doi.org/10.2112/si65-059.1
32 https://doi.org/10.2112/si65-065.1
33 schema:datePublished 2017-10
34 schema:datePublishedReg 2017-10-01
35 schema:description Waves are important driving forces that have significant implications in deep and shallow waters. To achieve further understanding of the characteristics of wind waves in the Gulf of Mannar, an attempt is made based on the measured data off Kulasekharapatnam for the period from January 2006 to May 2007. The integrated third-generation ocean wave models, WAM and SWAN, are implemented to simulate the significant wave parameters. Simulations were carried out using ECMWF ERA-Interim winds over the deep waters (30°E–120°E; 70°S–30°N and 76°E–80°E; 6°N–10°N) domains. Comparison of the ECMWF ERA-Interim wind data against the field measured data demonstrates that the overall trend and dominant directions are consistent with the observational data. The validation of significant wave parameters exhibited very high correlation (R > 0.9) at the study location. Wave heights are high in the Gulf of Mannar during the southwest monsoon period and the waves are from south-southwest. The study also shows that swells are predominant (24%) in the Gulf of Mannar during non-monsoon period and during rest of the year, wind sea (75.9%) dominates. The study also demonstrates the sensitivity of the SWAN model towards different GEN3 physics options and bottom friction formulations by forcing the model with QuikSCAT/NCEP Blended winds off Kulasekharapatnam. The simulations obtained using different GEN3 physics options and bottom friction formulations have been compared with the buoy data. The study indicates that the SWAN model with Janssen and Komen physics options simulates the significant wave height and mean wave period, respectively, with a fairly high degree of accuracy. Similarly, the JONSWAP formulation for bottom friction reproduced the buoy signals at the study location with good accuracy for both significant wave height and mean wave period. The study demonstrates that the simulations are sensitive to the choice of GEN3 physics and bottom friction formulations off Kulasekharapatnam, and hence effective for obtaining more accurate wave predictions.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N2f390733507d456fb70eec5bb44cf553
40 Nd51dabe94c084daf8de2c9c3f23adcfb
41 sg:journal.1136817
42 schema:name Numerical Simulation of Wave Characteristics off Kulasekharapatnam, Southeast Coast of India
43 schema:pagination 3979-4001
44 schema:productId N2668ae7b8ab54065803cbd8de08876b9
45 N9dfa79c162a44b888d0df3f8880672fb
46 Na4c4e053f4f341d99aca15c26f02b782
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090295848
48 https://doi.org/10.1007/s00024-017-1599-6
49 schema:sdDatePublished 2019-04-11T09:55
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N840d1843451a4282858de0f8b08071e7
52 schema:url https://link.springer.com/10.1007%2Fs00024-017-1599-6
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N2668ae7b8ab54065803cbd8de08876b9 schema:name dimensions_id
57 schema:value pub.1090295848
58 rdf:type schema:PropertyValue
59 N2f390733507d456fb70eec5bb44cf553 schema:volumeNumber 174
60 rdf:type schema:PublicationVolume
61 N5ba282d84b31406aa3bbbb0a7c87a592 rdf:first Nd7363f9fd87b47f39fcad99a5f378dc6
62 rdf:rest Nd9e488061841436e98f39bf90ac9fb57
63 N840d1843451a4282858de0f8b08071e7 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N9dfa79c162a44b888d0df3f8880672fb schema:name doi
66 schema:value 10.1007/s00024-017-1599-6
67 rdf:type schema:PropertyValue
68 Na4c4e053f4f341d99aca15c26f02b782 schema:name readcube_id
69 schema:value 579e507ebc3a7059256b2819fc9cee3ae9f937260a72a24397050c732fae03fc
70 rdf:type schema:PropertyValue
71 Nb127220aaded4907977e5a55ec241e0c rdf:first sg:person.012011433523.21
72 rdf:rest N5ba282d84b31406aa3bbbb0a7c87a592
73 Nd51dabe94c084daf8de2c9c3f23adcfb schema:issueNumber 10
74 rdf:type schema:PublicationIssue
75 Nd7363f9fd87b47f39fcad99a5f378dc6 schema:affiliation https://www.grid.ac/institutes/grid.464850.b
76 schema:familyName Kani
77 schema:givenName Selvin P.
78 rdf:type schema:Person
79 Nd9e488061841436e98f39bf90ac9fb57 rdf:first sg:person.015360732105.04
80 rdf:rest rdf:nil
81 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
82 schema:name Earth Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
85 schema:name Oceanography
86 rdf:type schema:DefinedTerm
87 sg:journal.1136817 schema:issn 0033-4553
88 1420-9136
89 schema:name Pure and Applied Geophysics
90 rdf:type schema:Periodical
91 sg:person.012011433523.21 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
92 schema:familyName P. A
93 schema:givenName Umesh
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011433523.21
95 rdf:type schema:Person
96 sg:person.015360732105.04 schema:affiliation https://www.grid.ac/institutes/grid.429017.9
97 schema:familyName Bhaskaran
98 schema:givenName Prasad K.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015360732105.04
100 rdf:type schema:Person
101 sg:pub.10.1007/978-1-4757-2665-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024911621
102 https://doi.org/10.1007/978-1-4757-2665-7
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11069-008-9293-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001484293
105 https://doi.org/10.1007/s11069-008-9293-8
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0167-6105(88)90011-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007384045
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.apor.2009.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037091496
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.coastaleng.2005.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032240730
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.coastaleng.2008.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007824732
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.csr.2005.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855818
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jmarsys.2004.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047057301
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.oceaneng.2006.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001594838
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.oceaneng.2013.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014755562
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0378-3839(00)00033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025450601
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1029/1998jc900045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053655144
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1029/2001gl013587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021343551
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1029/98jc02622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053607037
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1029/jc077i015p02693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013481669
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1061/9780872626874.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1097233425
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/1755876x.2016.1182792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002394997
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/1520-0426(2001)018<2052:aomfsw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011143494
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849757
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009755320
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000085744
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048477459
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1175/2008jtecho609.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000938693
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1175/jtech1707.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016889924
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1515/ijnaoe-2015-0065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025736525
154 rdf:type schema:CreativeWork
155 https://doi.org/10.2112/04-0173.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053175338
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2112/si65-059.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068922125
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2112/si65-065.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068922131
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.429017.9 schema:alternateName Indian Institute of Technology Kharagpur
162 schema:name Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology Kharagpur, 721 302, Kharagpur, West Bengal, India
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.464850.b schema:alternateName Institute of Environmental Studies & Wetland Management
165 schema:name Integrated Coastal Zone Management Project, Institute of Environmental Studies and Wetland Management, Sector-1, Salt Lake City, 700 064, Kolkata, India
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...