Fracture of a Liquefied Crack and the Physics of Rayleigh Waves View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-09

AUTHORS

L. Knopoff, J. A. Landoni

ABSTRACT

The standard free-surface boundary conditions for in-plane crack dynamics are shown to be identical to the conditions for crack dynamics on a liquefied crack. The surfaces of both the free and liquefied cracks do not separate during faulting and hence the static normal stress is not relaxed by the faulting. A crack with either free or liquid boundary conditions deforms in the transverse direction during slip. It follows that both the free and liquefied cracks may represent solutions to the heat-flow paradox. As an application of the proof, we derive a physical understanding of the properties of harmonic Rayleigh waves on a uniform elastic half-space without solving a cubic equation. More... »

PAGES

1741-1750

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00024-006-0094-2

DOI

http://dx.doi.org/10.1007/s00024-006-0094-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037710892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0404", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geophysics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, University of California, 90095, Los Angeles, CA, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Institute of Geophysics and Planetary Physics, University of California, 90095, Los Angeles, CA, U.S.A", 
            "Department of Physics and Astronomy, University of California, 90095, Los Angeles, CA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knopoff", 
        "givenName": "L.", 
        "id": "sg:person.016534500761.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016534500761.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Geophysics and Planetary Physics, University of California, 90095, Los Angeles, CA, U.S.A", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Institute of Geophysics and Planetary Physics, University of California, 90095, Los Angeles, CA, U.S.A"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landoni", 
        "givenName": "J. A.", 
        "id": "sg:person.015163221440.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163221440.50"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-09", 
    "datePublishedReg": "2006-09-01", 
    "description": "The standard free-surface boundary conditions for in-plane crack dynamics are shown to be identical to the conditions for crack dynamics on a liquefied crack. The surfaces of both the free and liquefied cracks do not separate during faulting and hence the static normal stress is not relaxed by the faulting. A crack with either free or liquid boundary conditions deforms in the transverse direction during slip. It follows that both the free and liquefied cracks may represent solutions to the heat-flow paradox. As an application of the proof, we derive a physical understanding of the properties of harmonic Rayleigh waves on a uniform elastic half-space without solving a cubic equation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00024-006-0094-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136817", 
        "issn": [
          "0033-4553", 
          "1420-9136"
        ], 
        "name": "Pure and Applied Geophysics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "163"
      }
    ], 
    "keywords": [
      "crack dynamics", 
      "free surface boundary conditions", 
      "Rayleigh waves", 
      "static normal stress", 
      "liquid boundary condition", 
      "harmonic Rayleigh waves", 
      "boundary conditions", 
      "heat flow paradox", 
      "normal stress", 
      "cracks", 
      "transverse direction", 
      "physical understanding", 
      "cubic equation", 
      "waves", 
      "slip", 
      "conditions", 
      "surface", 
      "properties", 
      "dynamics", 
      "applications", 
      "equations", 
      "fractures", 
      "stress", 
      "solution", 
      "direction", 
      "faulting", 
      "physics", 
      "proof", 
      "understanding", 
      "paradox"
    ], 
    "name": "Fracture of a Liquefied Crack and the Physics of Rayleigh Waves", 
    "pagination": "1741-1750", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037710892"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00024-006-0094-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00024-006-0094-2", 
      "https://app.dimensions.ai/details/publication/pub.1037710892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_416.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00024-006-0094-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-006-0094-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-006-0094-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-006-0094-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-006-0094-2'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      20 PREDICATES      57 URIs      47 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00024-006-0094-2 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 anzsrc-for:04
4 anzsrc-for:0404
5 schema:author Ne09afd6f090e42caa49b1d8426cc0a9b
6 schema:datePublished 2006-09
7 schema:datePublishedReg 2006-09-01
8 schema:description The standard free-surface boundary conditions for in-plane crack dynamics are shown to be identical to the conditions for crack dynamics on a liquefied crack. The surfaces of both the free and liquefied cracks do not separate during faulting and hence the static normal stress is not relaxed by the faulting. A crack with either free or liquid boundary conditions deforms in the transverse direction during slip. It follows that both the free and liquefied cracks may represent solutions to the heat-flow paradox. As an application of the proof, we derive a physical understanding of the properties of harmonic Rayleigh waves on a uniform elastic half-space without solving a cubic equation.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N2468e36b85514aa6afe51bccd8036ca8
12 Nfc5ba3163720401ba82c4528cff908ad
13 sg:journal.1136817
14 schema:keywords Rayleigh waves
15 applications
16 boundary conditions
17 conditions
18 crack dynamics
19 cracks
20 cubic equation
21 direction
22 dynamics
23 equations
24 faulting
25 fractures
26 free surface boundary conditions
27 harmonic Rayleigh waves
28 heat flow paradox
29 liquid boundary condition
30 normal stress
31 paradox
32 physical understanding
33 physics
34 proof
35 properties
36 slip
37 solution
38 static normal stress
39 stress
40 surface
41 transverse direction
42 understanding
43 waves
44 schema:name Fracture of a Liquefied Crack and the Physics of Rayleigh Waves
45 schema:pagination 1741-1750
46 schema:productId N988a8d72da054b5f8d2639dc7a69816e
47 Nc780877b58a4433e9ea2c19d055264fd
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037710892
49 https://doi.org/10.1007/s00024-006-0094-2
50 schema:sdDatePublished 2022-11-24T20:51
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nf71aa52701ac4339b80ddc908aa7ad09
53 schema:url https://doi.org/10.1007/s00024-006-0094-2
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N14c620f946574eb2860b6798d9fed657 rdf:first sg:person.015163221440.50
58 rdf:rest rdf:nil
59 N2468e36b85514aa6afe51bccd8036ca8 schema:issueNumber 9
60 rdf:type schema:PublicationIssue
61 N988a8d72da054b5f8d2639dc7a69816e schema:name dimensions_id
62 schema:value pub.1037710892
63 rdf:type schema:PropertyValue
64 Nc780877b58a4433e9ea2c19d055264fd schema:name doi
65 schema:value 10.1007/s00024-006-0094-2
66 rdf:type schema:PropertyValue
67 Ne09afd6f090e42caa49b1d8426cc0a9b rdf:first sg:person.016534500761.19
68 rdf:rest N14c620f946574eb2860b6798d9fed657
69 Nf71aa52701ac4339b80ddc908aa7ad09 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nfc5ba3163720401ba82c4528cff908ad schema:volumeNumber 163
72 rdf:type schema:PublicationVolume
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
77 schema:name Numerical and Computational Mathematics
78 rdf:type schema:DefinedTerm
79 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
80 schema:name Earth Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0404 schema:inDefinedTermSet anzsrc-for:
83 schema:name Geophysics
84 rdf:type schema:DefinedTerm
85 sg:journal.1136817 schema:issn 0033-4553
86 1420-9136
87 schema:name Pure and Applied Geophysics
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.015163221440.50 schema:affiliation grid-institutes:grid.19006.3e
91 schema:familyName Landoni
92 schema:givenName J. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015163221440.50
94 rdf:type schema:Person
95 sg:person.016534500761.19 schema:affiliation grid-institutes:grid.19006.3e
96 schema:familyName Knopoff
97 schema:givenName L.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016534500761.19
99 rdf:type schema:Person
100 grid-institutes:grid.19006.3e schema:alternateName Department of Physics and Astronomy, University of California, 90095, Los Angeles, CA, U.S.A
101 Institute of Geophysics and Planetary Physics, University of California, 90095, Los Angeles, CA, U.S.A
102 schema:name Department of Physics and Astronomy, University of California, 90095, Los Angeles, CA, U.S.A
103 Institute of Geophysics and Planetary Physics, University of California, 90095, Los Angeles, CA, U.S.A
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...