Ontology type: schema:ScholarlyArticle
2002-02
AUTHORSW. A. Woodward, S. R. Sain, H. L. Gray, B. Zhao, M. D. Fisk
ABSTRACT— We consider the problem of multivariate outlier testing for purposes of distinguishing seismic signals of underground nuclear events from training samples based on non-nuclear seismic events when certain data are missing. We consider the case in which the training data follow a multivariate normal distribution. Assume a potential outlier is observed on which k features of interest are measured. Assume further that the available training set of n observations on these k features is available but that some of the observations in the training data have missing features. The approach currently used in practice is to perform the outlier testing using a generalized likelihood ratio test procedure based only on the data vectors in the training data with complete data. When there is a substantial amount of missing data within the training set, use of this strategy may lead to a loss of valuable information. An alternative procedure is to incorporate all n of the data vectors in the training data using the EM algorithm to appropriately handle the missing data in the training set. Resampling methods are used to find appropriate critical regions. We use simulation results and analysis of models fit to Pg/Lg ratios for the WMQ station in China to compare these two strategies for dealing with missing data. More... »
PAGES889-903
http://scigraph.springernature.com/pub.10.1007/s00024-002-8663-5
DOIhttp://dx.doi.org/10.1007/s00024-002-8663-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1017269672
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US"
],
"type": "Organization"
},
"familyName": "Woodward",
"givenName": "W. A.",
"id": "sg:person.013707166007.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US"
],
"type": "Organization"
},
"familyName": "Sain",
"givenName": "S. R.",
"id": "sg:person.016621675366.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621675366.88"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US"
],
"type": "Organization"
},
"familyName": "Gray",
"givenName": "H. L.",
"id": "sg:person.011651455247.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651455247.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US",
"id": "http://www.grid.ac/institutes/grid.263864.d",
"name": [
"Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US"
],
"type": "Organization"
},
"familyName": "Zhao",
"givenName": "B.",
"id": "sg:person.013702106566.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702106566.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mission Research Corporation, 8560 Cinderbed Road, Suite 700, Newington, VA, 22122, U.S.A., US",
"id": "http://www.grid.ac/institutes/grid.421454.2",
"name": [
"Mission Research Corporation, 8560 Cinderbed Road, Suite 700, Newington, VA, 22122, U.S.A., US"
],
"type": "Organization"
},
"familyName": "Fisk",
"givenName": "M. D.",
"id": "sg:person.01134353065.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134353065.48"
],
"type": "Person"
}
],
"datePublished": "2002-02",
"datePublishedReg": "2002-02-01",
"description": "Abstract\u200a\u2014\u200aWe consider the problem of multivariate outlier testing for purposes of distinguishing seismic signals of underground nuclear events from training samples based on non-nuclear seismic events when certain data are missing. We consider the case in which the training data follow a multivariate normal distribution. Assume a potential outlier is observed on which k features of interest are measured. Assume further that the available training set of n observations on these k features is available but that some of the observations in the training data have missing features. The approach currently used in practice is to perform the outlier testing using a generalized likelihood ratio test procedure based only on the data vectors in the training data with complete data. When there is a substantial amount of missing data within the training set, use of this strategy may lead to a loss of valuable information. An alternative procedure is to incorporate all n of the data vectors in the training data using the EM algorithm to appropriately handle the missing data in the training set. Resampling methods are used to find appropriate critical regions. We use simulation results and analysis of models fit to Pg/Lg ratios for the WMQ station in China to compare these two strategies for dealing with missing data.",
"genre": "article",
"id": "sg:pub.10.1007/s00024-002-8663-5",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136817",
"issn": [
"0033-4553",
"1420-9136"
],
"name": "Pure and Applied Geophysics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "159"
}
],
"keywords": [
"multivariate normal distribution",
"data vectors",
"likelihood ratio test procedure",
"outlier testing",
"ratio test procedure",
"analysis of models",
"EM algorithm",
"multivariate outliers",
"Missing Data",
"normal distribution",
"resampling method",
"training data",
"available training set",
"potential outliers",
"simulation results",
"seismic signals",
"training set",
"critical region",
"outliers",
"features of interest",
"set",
"training samples",
"certain data",
"vector",
"alternative procedure",
"algorithm",
"problem",
"seismic events",
"model",
"distribution",
"features",
"observations",
"procedure",
"data",
"approach",
"signals",
"test procedure",
"stations",
"valuable information",
"cases",
"results",
"interest",
"complete data",
"information",
"analysis",
"strategies",
"region",
"ratio",
"purpose",
"use",
"presence",
"testing",
"events",
"samples",
"substantial amount",
"amount",
"loss",
"nuclear events",
"practice",
"China",
"method",
"underground nuclear events",
"Lg ratios"
],
"name": "Testing for Multivariate Outliers in the Presence of Missing Data",
"pagination": "889-903",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1017269672"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00024-002-8663-5"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00024-002-8663-5",
"https://app.dimensions.ai/details/publication/pub.1017269672"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:22",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_354.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00024-002-8663-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00024-002-8663-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00024-002-8663-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00024-002-8663-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00024-002-8663-5'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
21 PREDICATES
89 URIs
81 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00024-002-8663-5 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | Nb6bdd3ecbb924fe8bc3265baddffc375 |
4 | ″ | schema:datePublished | 2002-02 |
5 | ″ | schema:datePublishedReg | 2002-02-01 |
6 | ″ | schema:description | Abstract — We consider the problem of multivariate outlier testing for purposes of distinguishing seismic signals of underground nuclear events from training samples based on non-nuclear seismic events when certain data are missing. We consider the case in which the training data follow a multivariate normal distribution. Assume a potential outlier is observed on which k features of interest are measured. Assume further that the available training set of n observations on these k features is available but that some of the observations in the training data have missing features. The approach currently used in practice is to perform the outlier testing using a generalized likelihood ratio test procedure based only on the data vectors in the training data with complete data. When there is a substantial amount of missing data within the training set, use of this strategy may lead to a loss of valuable information. An alternative procedure is to incorporate all n of the data vectors in the training data using the EM algorithm to appropriately handle the missing data in the training set. Resampling methods are used to find appropriate critical regions. We use simulation results and analysis of models fit to Pg/Lg ratios for the WMQ station in China to compare these two strategies for dealing with missing data. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N60be508e1d3c4ed6b4de0bf89c59f441 |
11 | ″ | ″ | Nfb76277fee56468d87b21c81e086a552 |
12 | ″ | ″ | sg:journal.1136817 |
13 | ″ | schema:keywords | China |
14 | ″ | ″ | EM algorithm |
15 | ″ | ″ | Lg ratios |
16 | ″ | ″ | Missing Data |
17 | ″ | ″ | algorithm |
18 | ″ | ″ | alternative procedure |
19 | ″ | ″ | amount |
20 | ″ | ″ | analysis |
21 | ″ | ″ | analysis of models |
22 | ″ | ″ | approach |
23 | ″ | ″ | available training set |
24 | ″ | ″ | cases |
25 | ″ | ″ | certain data |
26 | ″ | ″ | complete data |
27 | ″ | ″ | critical region |
28 | ″ | ″ | data |
29 | ″ | ″ | data vectors |
30 | ″ | ″ | distribution |
31 | ″ | ″ | events |
32 | ″ | ″ | features |
33 | ″ | ″ | features of interest |
34 | ″ | ″ | information |
35 | ″ | ″ | interest |
36 | ″ | ″ | likelihood ratio test procedure |
37 | ″ | ″ | loss |
38 | ″ | ″ | method |
39 | ″ | ″ | model |
40 | ″ | ″ | multivariate normal distribution |
41 | ″ | ″ | multivariate outliers |
42 | ″ | ″ | normal distribution |
43 | ″ | ″ | nuclear events |
44 | ″ | ″ | observations |
45 | ″ | ″ | outlier testing |
46 | ″ | ″ | outliers |
47 | ″ | ″ | potential outliers |
48 | ″ | ″ | practice |
49 | ″ | ″ | presence |
50 | ″ | ″ | problem |
51 | ″ | ″ | procedure |
52 | ″ | ″ | purpose |
53 | ″ | ″ | ratio |
54 | ″ | ″ | ratio test procedure |
55 | ″ | ″ | region |
56 | ″ | ″ | resampling method |
57 | ″ | ″ | results |
58 | ″ | ″ | samples |
59 | ″ | ″ | seismic events |
60 | ″ | ″ | seismic signals |
61 | ″ | ″ | set |
62 | ″ | ″ | signals |
63 | ″ | ″ | simulation results |
64 | ″ | ″ | stations |
65 | ″ | ″ | strategies |
66 | ″ | ″ | substantial amount |
67 | ″ | ″ | test procedure |
68 | ″ | ″ | testing |
69 | ″ | ″ | training data |
70 | ″ | ″ | training samples |
71 | ″ | ″ | training set |
72 | ″ | ″ | underground nuclear events |
73 | ″ | ″ | use |
74 | ″ | ″ | valuable information |
75 | ″ | ″ | vector |
76 | ″ | schema:name | Testing for Multivariate Outliers in the Presence of Missing Data |
77 | ″ | schema:pagination | 889-903 |
78 | ″ | schema:productId | N608ef60c98234c26869e07a1421799b8 |
79 | ″ | ″ | Nb45d15ecdf874c2b91ca123eb69950c1 |
80 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017269672 |
81 | ″ | ″ | https://doi.org/10.1007/s00024-002-8663-5 |
82 | ″ | schema:sdDatePublished | 2022-05-20T07:22 |
83 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
84 | ″ | schema:sdPublisher | Nb29cf077019a4dc1824692d6f4cfea5d |
85 | ″ | schema:url | https://doi.org/10.1007/s00024-002-8663-5 |
86 | ″ | sgo:license | sg:explorer/license/ |
87 | ″ | sgo:sdDataset | articles |
88 | ″ | rdf:type | schema:ScholarlyArticle |
89 | N4a50f34a07a54576af62cfe03c919cdf | rdf:first | sg:person.013702106566.63 |
90 | ″ | rdf:rest | N9b7e7b2114ce46e6a8ab1d49c434e515 |
91 | N608ef60c98234c26869e07a1421799b8 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1017269672 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N60be508e1d3c4ed6b4de0bf89c59f441 | schema:issueNumber | 4 |
95 | ″ | rdf:type | schema:PublicationIssue |
96 | N9b7e7b2114ce46e6a8ab1d49c434e515 | rdf:first | sg:person.01134353065.48 |
97 | ″ | rdf:rest | rdf:nil |
98 | Nb29cf077019a4dc1824692d6f4cfea5d | schema:name | Springer Nature - SN SciGraph project |
99 | ″ | rdf:type | schema:Organization |
100 | Nb45d15ecdf874c2b91ca123eb69950c1 | schema:name | doi |
101 | ″ | schema:value | 10.1007/s00024-002-8663-5 |
102 | ″ | rdf:type | schema:PropertyValue |
103 | Nb6bdd3ecbb924fe8bc3265baddffc375 | rdf:first | sg:person.013707166007.62 |
104 | ″ | rdf:rest | Nba5c432e73db455e9321405cdaafba45 |
105 | Nba5c432e73db455e9321405cdaafba45 | rdf:first | sg:person.016621675366.88 |
106 | ″ | rdf:rest | Ned027a02d5a64538bb5c497424ddd908 |
107 | Ned027a02d5a64538bb5c497424ddd908 | rdf:first | sg:person.011651455247.77 |
108 | ″ | rdf:rest | N4a50f34a07a54576af62cfe03c919cdf |
109 | Nfb76277fee56468d87b21c81e086a552 | schema:volumeNumber | 159 |
110 | ″ | rdf:type | schema:PublicationVolume |
111 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
112 | ″ | schema:name | Mathematical Sciences |
113 | ″ | rdf:type | schema:DefinedTerm |
114 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
115 | ″ | schema:name | Statistics |
116 | ″ | rdf:type | schema:DefinedTerm |
117 | sg:journal.1136817 | schema:issn | 0033-4553 |
118 | ″ | ″ | 1420-9136 |
119 | ″ | schema:name | Pure and Applied Geophysics |
120 | ″ | schema:publisher | Springer Nature |
121 | ″ | rdf:type | schema:Periodical |
122 | sg:person.01134353065.48 | schema:affiliation | grid-institutes:grid.421454.2 |
123 | ″ | schema:familyName | Fisk |
124 | ″ | schema:givenName | M. D. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134353065.48 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.011651455247.77 | schema:affiliation | grid-institutes:grid.263864.d |
128 | ″ | schema:familyName | Gray |
129 | ″ | schema:givenName | H. L. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651455247.77 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.013702106566.63 | schema:affiliation | grid-institutes:grid.263864.d |
133 | ″ | schema:familyName | Zhao |
134 | ″ | schema:givenName | B. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013702106566.63 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.013707166007.62 | schema:affiliation | grid-institutes:grid.263864.d |
138 | ″ | schema:familyName | Woodward |
139 | ″ | schema:givenName | W. A. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013707166007.62 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.016621675366.88 | schema:affiliation | grid-institutes:grid.263864.d |
143 | ″ | schema:familyName | Sain |
144 | ″ | schema:givenName | S. R. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621675366.88 |
146 | ″ | rdf:type | schema:Person |
147 | grid-institutes:grid.263864.d | schema:alternateName | Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US |
148 | ″ | schema:name | Southern Methodist University, Department of Geological Sciences, Dallas, TX 75275, U.S.A., US |
149 | ″ | rdf:type | schema:Organization |
150 | grid-institutes:grid.421454.2 | schema:alternateName | Mission Research Corporation, 8560 Cinderbed Road, Suite 700, Newington, VA, 22122, U.S.A., US |
151 | ″ | schema:name | Mission Research Corporation, 8560 Cinderbed Road, Suite 700, Newington, VA, 22122, U.S.A., US |
152 | ″ | rdf:type | schema:Organization |