Instability of Resonances Under Stark Perturbations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12-12

AUTHORS

Arne Jensen, Kenji Yajima

ABSTRACT

Let Hε=-d2dx2+εx+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\varepsilon }=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+\varepsilon x +V$$\end{document}, ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document}, on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbf {R})$$\end{document}. Let V=∑k=1Nck|ψk⟩⟨ψk|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\sum _{k=1}^Nc_k|{\psi _k}\rangle \langle {\psi _k}|$$\end{document} be a rank N operator, where the ψk∈L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _k\in L^2(\mathbf {R})$$\end{document} are real, compactly supported, and even. Resonances are defined using analytic scattering theory. The main result is that if ζn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n$$\end{document}, Imζn<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Im}\,}}\zeta _n<0$$\end{document}, are resonances of Hεn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\varepsilon _n}$$\end{document} for a sequence εn↓0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _n\downarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} and ζn→ζ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n\rightarrow \zeta _0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, Imζ0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Im}\,}}\zeta _0<0$$\end{document}, then ζ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _0$$\end{document} is not a resonance of H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^0$$\end{document}. More... »

PAGES

675-687

References to SciGraph publications

  • 2014-12-16. Instability of Pre-Existing Resonances Under a Small Constant Electric Field in ANNALES HENRI POINCARÉ
  • 2017-11-24. Asymptotics of resonances for 1D Stark operators in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00023-018-0746-7

    DOI

    http://dx.doi.org/10.1007/s00023-018-0746-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110555693


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark", 
              "id": "http://www.grid.ac/institutes/grid.5117.2", 
              "name": [
                "Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg \u00d8, Denmark"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jensen", 
            "givenName": "Arne", 
            "id": "sg:person.015240561701.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.256169.f", 
              "name": [
                "Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yajima", 
            "givenName": "Kenji", 
            "id": "sg:person.07527307031.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527307031.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00023-014-0389-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035351555", 
              "https://doi.org/10.1007/s00023-014-0389-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-017-1033-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092996658", 
              "https://doi.org/10.1007/s11005-017-1033-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-12", 
        "datePublishedReg": "2018-12-12", 
        "description": "Let H\u03b5=-d2dx2+\u03b5x+V\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^{\\varepsilon }=-\\frac{\\mathrm{d}^2}{\\mathrm{d}x^2}+\\varepsilon x +V$$\\end{document}, \u03b5\u22650\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon \\ge 0$$\\end{document}, on L2(R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$L^2(\\mathbf {R})$$\\end{document}. Let V=\u2211k=1Nck|\u03c8k\u27e9\u27e8\u03c8k|\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$V=\\sum _{k=1}^Nc_k|{\\psi _k}\\rangle \\langle {\\psi _k}|$$\\end{document} be a rank N operator, where the \u03c8k\u2208L2(R)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\psi _k\\in L^2(\\mathbf {R})$$\\end{document} are real, compactly supported, and even. Resonances are defined using analytic scattering theory. The main result is that if \u03b6n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\zeta _n$$\\end{document}, Im\u03b6n<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\,\\mathrm{Im}\\,}}\\zeta _n<0$$\\end{document}, are resonances of H\u03b5n\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^{\\varepsilon _n}$$\\end{document} for a sequence \u03b5n\u21930\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\varepsilon _n\\downarrow 0$$\\end{document} as n\u2192\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n\\rightarrow \\infty $$\\end{document} and \u03b6n\u2192\u03b60\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\zeta _n\\rightarrow \\zeta _0$$\\end{document} as n\u2192\u221e\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$n\\rightarrow \\infty $$\\end{document}, Im\u03b60<0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${{\\,\\mathrm{Im}\\,}}\\zeta _0<0$$\\end{document}, then \u03b60\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\zeta _0$$\\end{document} is not a resonance of H0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$H^0$$\\end{document}.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00023-018-0746-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5913472", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8433984", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1297524", 
            "issn": [
              "1424-0637", 
              "1424-0661"
            ], 
            "name": "Annales Henri Poincar\u00e9", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "main results", 
          "resonance", 
          "results", 
          "instability", 
          "sequence", 
          "perturbations", 
          "operators", 
          "theory", 
          "scattering theory", 
          "instability of resonances", 
          "Stark perturbation", 
          "rank N operator", 
          "N operator", 
          "Analytic scattering theory"
        ], 
        "name": "Instability of Resonances Under Stark Perturbations", 
        "pagination": "675-687", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110555693"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00023-018-0746-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00023-018-0746-7", 
          "https://app.dimensions.ai/details/publication/pub.1110555693"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_783.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00023-018-0746-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-018-0746-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-018-0746-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-018-0746-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-018-0746-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      22 PREDICATES      43 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00023-018-0746-7 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 schema:author N8e4da80723854e1fa4315d6ba0ce3319
    6 schema:citation sg:pub.10.1007/s00023-014-0389-2
    7 sg:pub.10.1007/s11005-017-1033-0
    8 schema:datePublished 2018-12-12
    9 schema:datePublishedReg 2018-12-12
    10 schema:description Let Hε=-d2dx2+εx+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\varepsilon }=-\frac{\mathrm{d}^2}{\mathrm{d}x^2}+\varepsilon x +V$$\end{document}, ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document}, on L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2(\mathbf {R})$$\end{document}. Let V=∑k=1Nck|ψk⟩⟨ψk|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V=\sum _{k=1}^Nc_k|{\psi _k}\rangle \langle {\psi _k}|$$\end{document} be a rank N operator, where the ψk∈L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi _k\in L^2(\mathbf {R})$$\end{document} are real, compactly supported, and even. Resonances are defined using analytic scattering theory. The main result is that if ζn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n$$\end{document}, Imζn<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Im}\,}}\zeta _n<0$$\end{document}, are resonances of Hεn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\varepsilon _n}$$\end{document} for a sequence εn↓0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _n\downarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} and ζn→ζ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _n\rightarrow \zeta _0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}, Imζ0<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{Im}\,}}\zeta _0<0$$\end{document}, then ζ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta _0$$\end{document} is not a resonance of H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^0$$\end{document}.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N6f1212aafe324dbb9e8b83f7d8c949bb
    15 N7f90d78ca3fb4316ab868c6f65a2615a
    16 sg:journal.1297524
    17 schema:keywords Analytic scattering theory
    18 N operator
    19 Stark perturbation
    20 instability
    21 instability of resonances
    22 main results
    23 operators
    24 perturbations
    25 rank N operator
    26 resonance
    27 results
    28 scattering theory
    29 sequence
    30 theory
    31 schema:name Instability of Resonances Under Stark Perturbations
    32 schema:pagination 675-687
    33 schema:productId N0466872258d14b8db8de1e602e608815
    34 N8c66db2501a44e74927e1e4f08e30148
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110555693
    36 https://doi.org/10.1007/s00023-018-0746-7
    37 schema:sdDatePublished 2021-12-01T19:41
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N7f01a3f3d6394d3d81b17da0ed0f4d3e
    40 schema:url https://doi.org/10.1007/s00023-018-0746-7
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N0466872258d14b8db8de1e602e608815 schema:name doi
    45 schema:value 10.1007/s00023-018-0746-7
    46 rdf:type schema:PropertyValue
    47 N6f1212aafe324dbb9e8b83f7d8c949bb schema:volumeNumber 20
    48 rdf:type schema:PublicationVolume
    49 N7f01a3f3d6394d3d81b17da0ed0f4d3e schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 N7f90d78ca3fb4316ab868c6f65a2615a schema:issueNumber 2
    52 rdf:type schema:PublicationIssue
    53 N8c66db2501a44e74927e1e4f08e30148 schema:name dimensions_id
    54 schema:value pub.1110555693
    55 rdf:type schema:PropertyValue
    56 N8e4da80723854e1fa4315d6ba0ce3319 rdf:first sg:person.015240561701.11
    57 rdf:rest Nfbce67368f174dcb9ee66f181317d131
    58 Nfbce67368f174dcb9ee66f181317d131 rdf:first sg:person.07527307031.44
    59 rdf:rest rdf:nil
    60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Mathematical Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Mathematical Physics
    65 rdf:type schema:DefinedTerm
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    71 rdf:type schema:DefinedTerm
    72 sg:grant.5913472 http://pending.schema.org/fundedItem sg:pub.10.1007/s00023-018-0746-7
    73 rdf:type schema:MonetaryGrant
    74 sg:grant.8433984 http://pending.schema.org/fundedItem sg:pub.10.1007/s00023-018-0746-7
    75 rdf:type schema:MonetaryGrant
    76 sg:journal.1297524 schema:issn 1424-0637
    77 1424-0661
    78 schema:name Annales Henri Poincaré
    79 schema:publisher Springer Nature
    80 rdf:type schema:Periodical
    81 sg:person.015240561701.11 schema:affiliation grid-institutes:grid.5117.2
    82 schema:familyName Jensen
    83 schema:givenName Arne
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015240561701.11
    85 rdf:type schema:Person
    86 sg:person.07527307031.44 schema:affiliation grid-institutes:grid.256169.f
    87 schema:familyName Yajima
    88 schema:givenName Kenji
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07527307031.44
    90 rdf:type schema:Person
    91 sg:pub.10.1007/s00023-014-0389-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035351555
    92 https://doi.org/10.1007/s00023-014-0389-2
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/s11005-017-1033-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092996658
    95 https://doi.org/10.1007/s11005-017-1033-0
    96 rdf:type schema:CreativeWork
    97 grid-institutes:grid.256169.f schema:alternateName Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan
    98 schema:name Department of Mathematics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-8588, Tokyo, Japan
    99 rdf:type schema:Organization
    100 grid-institutes:grid.5117.2 schema:alternateName Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark
    101 schema:name Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, 9220, Aalborg Ø, Denmark
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...