Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11

AUTHORS

Wolfgang Wieland

ABSTRACT

In this article, we study the quantum theory of gravitational boundary modes on a null surface. These boundary modes are given by a spinor and a spinor-valued two-form, which enter the gravitational boundary term for self-dual gravity. Using a Fock representation, we quantise the boundary fields and show that the area of a two-dimensional cross section turns into the difference of two number operators. The spectrum is discrete, and it agrees with the one known from loop quantum gravity with the correct dependence on the Barbero–Immirzi parameter. No discrete structures (such as spin network functions, or triangulations of space) are ever required—the entire derivation happens at the level of the continuum theory. In addition, the area spectrum is manifestly Lorentz invariant. More... »

PAGES

3695-3717

Journal

TITLE

Annales Henri Poincaré

ISSUE

11

VOLUME

18

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00023-017-0598-6

DOI

http://dx.doi.org/10.1007/s00023-017-0598-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090855731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wieland", 
        "givenName": "Wolfgang", 
        "id": "sg:person.013603112153.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603112153.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevd.84.044049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001306752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.84.044049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001306752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.531037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006128799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.044050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011677529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.044050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011677529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014429194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.82.084041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014429194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.161301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014480191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.161301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014480191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/22/19/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017399187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/22/19/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017399187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(95)00150-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018883873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2016)102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649379", 
          "https://doi.org/10.1007/jhep09(2016)102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2016)102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649379", 
          "https://doi.org/10.1007/jhep09(2016)102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/32/11/112001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027190825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-0100-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030362519", 
          "https://doi.org/10.1007/s00220-006-0100-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-006-0100-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030362519", 
          "https://doi.org/10.1007/s00220-006-0100-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2008.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030919171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.91.064053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033713141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.91.064053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033713141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/8/1/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038423234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.124013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038545956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.65.124013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038545956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.091302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.091302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043788040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/29/4/045007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050627979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2009.04.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051212583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/14/1a/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052745815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.086009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.94.086009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060714303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/atmp.2000.v4.n1.a1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072456981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10714-017-2200-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083751454", 
          "https://doi.org/10.1007/s10714-017-2200-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10714-017-2200-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083751454", 
          "https://doi.org/10.1007/s10714-017-2200-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2017)142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085712470", 
          "https://doi.org/10.1007/jhep05(2017)142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6382/aa8d06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091808089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nuclphysb.2017.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091833679"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "In this article, we study the quantum theory of gravitational boundary modes on a null surface. These boundary modes are given by a spinor and a spinor-valued two-form, which enter the gravitational boundary term for self-dual gravity. Using a Fock representation, we quantise the boundary fields and show that the area of a two-dimensional cross section turns into the difference of two number operators. The spectrum is discrete, and it agrees with the one known from loop quantum gravity with the correct dependence on the Barbero\u2013Immirzi parameter. No discrete structures (such as spin network functions, or triangulations of space) are ever required\u2014the entire derivation happens at the level of the continuum theory. In addition, the area spectrum is manifestly Lorentz invariant.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00023-017-0598-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1297863", 
        "issn": [
          "1424-0637", 
          "1424-0661"
        ], 
        "name": "Annales Henri Poincar\u00e9", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum", 
    "pagination": "3695-3717", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02192b6beaff16084ed428a7c7ba701efe6405c1ee15832a51ca9cc223bff167"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00023-017-0598-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090855731"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00023-017-0598-6", 
      "https://app.dimensions.ai/details/publication/pub.1090855731"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99821_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00023-017-0598-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-017-0598-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-017-0598-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-017-0598-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-017-0598-6'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00023-017-0598-6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf34d5f65e91a4999beccf5108c08eb62
4 schema:citation sg:pub.10.1007/jhep05(2017)142
5 sg:pub.10.1007/jhep09(2016)102
6 sg:pub.10.1007/s00220-006-0100-7
7 sg:pub.10.1007/s10714-017-2200-4
8 https://doi.org/10.1016/0550-3213(95)00150-q
9 https://doi.org/10.1016/j.nuclphysb.2008.02.002
10 https://doi.org/10.1016/j.nuclphysb.2017.09.010
11 https://doi.org/10.1016/j.physletb.2009.04.045
12 https://doi.org/10.1063/1.531037
13 https://doi.org/10.1088/0264-9381/14/1a/006
14 https://doi.org/10.1088/0264-9381/22/19/r01
15 https://doi.org/10.1088/0264-9381/29/4/045007
16 https://doi.org/10.1088/0264-9381/32/11/112001
17 https://doi.org/10.1088/0264-9381/8/1/009
18 https://doi.org/10.1088/1361-6382/aa8d06
19 https://doi.org/10.1103/physrevd.65.124013
20 https://doi.org/10.1103/physrevd.82.044050
21 https://doi.org/10.1103/physrevd.82.084041
22 https://doi.org/10.1103/physrevd.84.044049
23 https://doi.org/10.1103/physrevd.91.064053
24 https://doi.org/10.1103/physrevd.94.086009
25 https://doi.org/10.1103/physrevlett.114.091302
26 https://doi.org/10.1103/physrevlett.99.161301
27 https://doi.org/10.4310/atmp.2000.v4.n1.a1
28 schema:datePublished 2017-11
29 schema:datePublishedReg 2017-11-01
30 schema:description In this article, we study the quantum theory of gravitational boundary modes on a null surface. These boundary modes are given by a spinor and a spinor-valued two-form, which enter the gravitational boundary term for self-dual gravity. Using a Fock representation, we quantise the boundary fields and show that the area of a two-dimensional cross section turns into the difference of two number operators. The spectrum is discrete, and it agrees with the one known from loop quantum gravity with the correct dependence on the Barbero–Immirzi parameter. No discrete structures (such as spin network functions, or triangulations of space) are ever required—the entire derivation happens at the level of the continuum theory. In addition, the area spectrum is manifestly Lorentz invariant.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N135d68bd69244d04811b381da37953a5
35 N21b680df054a48cf86b01b036730d702
36 sg:journal.1297863
37 schema:name Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum
38 schema:pagination 3695-3717
39 schema:productId N1f5068ff237648b995f281e04f0b3761
40 N3fd09bbeb77c4c34987d97849cb1401b
41 Ne17bd39589bb4ffe9ea0d27ee4cff84c
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090855731
43 https://doi.org/10.1007/s00023-017-0598-6
44 schema:sdDatePublished 2019-04-11T09:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N0e4ff707a1af4326aa8bb4d4c1d46b62
47 schema:url https://link.springer.com/10.1007%2Fs00023-017-0598-6
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N0e4ff707a1af4326aa8bb4d4c1d46b62 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N135d68bd69244d04811b381da37953a5 schema:issueNumber 11
54 rdf:type schema:PublicationIssue
55 N1f5068ff237648b995f281e04f0b3761 schema:name dimensions_id
56 schema:value pub.1090855731
57 rdf:type schema:PropertyValue
58 N21b680df054a48cf86b01b036730d702 schema:volumeNumber 18
59 rdf:type schema:PublicationVolume
60 N3fd09bbeb77c4c34987d97849cb1401b schema:name readcube_id
61 schema:value 02192b6beaff16084ed428a7c7ba701efe6405c1ee15832a51ca9cc223bff167
62 rdf:type schema:PropertyValue
63 Ne17bd39589bb4ffe9ea0d27ee4cff84c schema:name doi
64 schema:value 10.1007/s00023-017-0598-6
65 rdf:type schema:PropertyValue
66 Nf34d5f65e91a4999beccf5108c08eb62 rdf:first sg:person.013603112153.26
67 rdf:rest rdf:nil
68 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
69 schema:name Mathematical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
72 schema:name Pure Mathematics
73 rdf:type schema:DefinedTerm
74 sg:journal.1297863 schema:issn 1424-0637
75 1424-0661
76 schema:name Annales Henri Poincaré
77 rdf:type schema:Periodical
78 sg:person.013603112153.26 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
79 schema:familyName Wieland
80 schema:givenName Wolfgang
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603112153.26
82 rdf:type schema:Person
83 sg:pub.10.1007/jhep05(2017)142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085712470
84 https://doi.org/10.1007/jhep05(2017)142
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/jhep09(2016)102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649379
87 https://doi.org/10.1007/jhep09(2016)102
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00220-006-0100-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030362519
90 https://doi.org/10.1007/s00220-006-0100-7
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s10714-017-2200-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083751454
93 https://doi.org/10.1007/s10714-017-2200-4
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0550-3213(95)00150-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1018883873
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.nuclphysb.2008.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030919171
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.nuclphysb.2017.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091833679
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.physletb.2009.04.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051212583
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.531037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006128799
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1088/0264-9381/14/1a/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052745815
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1088/0264-9381/22/19/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017399187
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1088/0264-9381/29/4/045007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050627979
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1088/0264-9381/32/11/112001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027190825
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1088/0264-9381/8/1/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038423234
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/1361-6382/aa8d06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091808089
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevd.65.124013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038545956
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevd.82.044050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011677529
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevd.82.084041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014429194
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevd.84.044049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001306752
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevd.91.064053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033713141
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevd.94.086009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060714303
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.114.091302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043788040
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.99.161301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014480191
132 rdf:type schema:CreativeWork
133 https://doi.org/10.4310/atmp.2000.v4.n1.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456981
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
136 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline Street North, N2L 2Y5, Waterloo, ON, Canada
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...