Instability of Pre-Existing Resonances Under a Small Constant Electric Field View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-16

AUTHORS

Ira Herbst, Juliane Rama

ABSTRACT

Two simple model operators are considered which have pre-existing resonances. A potential corresponding to a small electric field, f, is then introduced and the resonances of the resulting operator are considered as f → 0. It is shown that these resonances are not continuous in this limit. It is conjectured that a similar behavior will appear in more complicated models of atoms and molecules. Numerical results are presented. More... »

PAGES

2783-2835

References to SciGraph publications

  • 1978. Mathematical Methods of Classical Mechanics in NONE
  • 1971-12. A class of analytic perturbations for one-body Schrödinger Hamiltonians in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1981-06. Dilation analyticity in constant electric field in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1995-12. Spectral analysis ofN-body Stark Hamiltonians in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1974-12. Stationary scattering theory for time-dependent Hamiltonians in MATHEMATISCHE ANNALEN
  • 1977-10. Spectral and scattering theory of Schrödinger operators related to the stark effect in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1979-10. Dilation analyticity in constant electric field in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987. Schrödinger Operators, With Applications to Quantum Mechanics and Global Geometry in NONE
  • 1982-12. Resonances for the AC-Stark effect in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003. The Analysis of Linear Partial Differential Operators I, Distribution Theory and Fourier Analysis in NONE
  • 1978-08. Resonances in Stark effect and perturbation theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1981-03. Resonances in the Stark effect of atomic systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00023-014-0389-2

    DOI

    http://dx.doi.org/10.1007/s00023-014-0389-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035351555


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herbst", 
            "givenName": "Ira", 
            "id": "sg:person.013216466044.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216466044.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.11348.3f", 
              "name": [
                "Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA", 
                "Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rama", 
            "givenName": "Juliane", 
            "id": "sg:person.013356650767.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356650767.68"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01609485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040883192", 
              "https://doi.org/10.1007/bf01609485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1693-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035545882", 
              "https://doi.org/10.1007/978-1-4757-1693-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034253298", 
              "https://doi.org/10.1007/bf01213010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01351346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045253666", 
              "https://doi.org/10.1007/bf01351346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01877510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043949968", 
              "https://doi.org/10.1007/bf01877510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01940333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052024323", 
              "https://doi.org/10.1007/bf01940333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77522-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015703607", 
              "https://doi.org/10.1007/978-3-540-77522-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61497-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049517054", 
              "https://doi.org/10.1007/978-3-642-61497-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02099603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049879789", 
              "https://doi.org/10.1007/bf02099603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01221735", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008786083", 
              "https://doi.org/10.1007/bf01221735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025516040", 
              "https://doi.org/10.1007/bf01206027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049431382", 
              "https://doi.org/10.1007/bf01208288"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12-16", 
        "datePublishedReg": "2014-12-16", 
        "description": "Two simple model operators are considered which have pre-existing resonances. A potential corresponding to a small electric field, f, is then introduced and the resonances of the resulting operator are considered as f \u2192 0. It is shown that these resonances are not continuous in this limit. It is conjectured that a similar behavior will appear in more complicated models of atoms and molecules. Numerical results are presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00023-014-0389-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297524", 
            "issn": [
              "1424-0637", 
              "1424-0661"
            ], 
            "name": "Annales Henri Poincar\u00e9", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "electric field", 
          "small electric field", 
          "constant electric field", 
          "resonance", 
          "field", 
          "atoms", 
          "similar behavior", 
          "instability", 
          "model operator", 
          "limit", 
          "molecules", 
          "numerical results", 
          "complicated models", 
          "potential", 
          "operators", 
          "behavior", 
          "model", 
          "results", 
          "simple model operators", 
          "pre-existing resonances", 
          "Small Constant Electric Field"
        ], 
        "name": "Instability of Pre-Existing Resonances Under a Small Constant Electric Field", 
        "pagination": "2783-2835", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035351555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00023-014-0389-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00023-014-0389-2", 
          "https://app.dimensions.ai/details/publication/pub.1035351555"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_640.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00023-014-0389-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-014-0389-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-014-0389-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-014-0389-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-014-0389-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      22 PREDICATES      60 URIs      38 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00023-014-0389-2 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0202
    5 schema:author N4ad2dd29542648b69d4553922c3b6fae
    6 schema:citation sg:pub.10.1007/978-1-4757-1693-1
    7 sg:pub.10.1007/978-3-540-77522-5
    8 sg:pub.10.1007/978-3-642-61497-2
    9 sg:pub.10.1007/bf01206027
    10 sg:pub.10.1007/bf01208288
    11 sg:pub.10.1007/bf01213010
    12 sg:pub.10.1007/bf01221735
    13 sg:pub.10.1007/bf01351346
    14 sg:pub.10.1007/bf01609485
    15 sg:pub.10.1007/bf01877510
    16 sg:pub.10.1007/bf01940333
    17 sg:pub.10.1007/bf02099603
    18 schema:datePublished 2014-12-16
    19 schema:datePublishedReg 2014-12-16
    20 schema:description Two simple model operators are considered which have pre-existing resonances. A potential corresponding to a small electric field, f, is then introduced and the resonances of the resulting operator are considered as f → 0. It is shown that these resonances are not continuous in this limit. It is conjectured that a similar behavior will appear in more complicated models of atoms and molecules. Numerical results are presented.
    21 schema:genre article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree true
    24 schema:isPartOf N489e462f391d4b4b90434ca23838fa45
    25 N94e045bcf1194a4186ec4979b9d98e4e
    26 sg:journal.1297524
    27 schema:keywords Small Constant Electric Field
    28 atoms
    29 behavior
    30 complicated models
    31 constant electric field
    32 electric field
    33 field
    34 instability
    35 limit
    36 model
    37 model operator
    38 molecules
    39 numerical results
    40 operators
    41 potential
    42 pre-existing resonances
    43 resonance
    44 results
    45 similar behavior
    46 simple model operators
    47 small electric field
    48 schema:name Instability of Pre-Existing Resonances Under a Small Constant Electric Field
    49 schema:pagination 2783-2835
    50 schema:productId N022bbc4de66c40b08723edec7b0a9b2c
    51 N92e703e4e52a44db90855e2e3c3593c5
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035351555
    53 https://doi.org/10.1007/s00023-014-0389-2
    54 schema:sdDatePublished 2021-12-01T19:31
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nc9e7743b3bd94d6c9f6592253a338b95
    57 schema:url https://doi.org/10.1007/s00023-014-0389-2
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N022bbc4de66c40b08723edec7b0a9b2c schema:name dimensions_id
    62 schema:value pub.1035351555
    63 rdf:type schema:PropertyValue
    64 N489e462f391d4b4b90434ca23838fa45 schema:issueNumber 12
    65 rdf:type schema:PublicationIssue
    66 N4ad2dd29542648b69d4553922c3b6fae rdf:first sg:person.013216466044.08
    67 rdf:rest N7f008d304d214e55bbc2f9283abd43dc
    68 N7f008d304d214e55bbc2f9283abd43dc rdf:first sg:person.013356650767.68
    69 rdf:rest rdf:nil
    70 N92e703e4e52a44db90855e2e3c3593c5 schema:name doi
    71 schema:value 10.1007/s00023-014-0389-2
    72 rdf:type schema:PropertyValue
    73 N94e045bcf1194a4186ec4979b9d98e4e schema:volumeNumber 16
    74 rdf:type schema:PublicationVolume
    75 Nc9e7743b3bd94d6c9f6592253a338b95 schema:name Springer Nature - SN SciGraph project
    76 rdf:type schema:Organization
    77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Mathematical Sciences
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Physics
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Physical Sciences
    85 rdf:type schema:DefinedTerm
    86 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    88 rdf:type schema:DefinedTerm
    89 sg:journal.1297524 schema:issn 1424-0637
    90 1424-0661
    91 schema:name Annales Henri Poincaré
    92 schema:publisher Springer Nature
    93 rdf:type schema:Periodical
    94 sg:person.013216466044.08 schema:affiliation grid-institutes:grid.27755.32
    95 schema:familyName Herbst
    96 schema:givenName Ira
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216466044.08
    98 rdf:type schema:Person
    99 sg:person.013356650767.68 schema:affiliation grid-institutes:grid.11348.3f
    100 schema:familyName Rama
    101 schema:givenName Juliane
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013356650767.68
    103 rdf:type schema:Person
    104 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
    105 https://doi.org/10.1007/978-1-4757-1693-1
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/978-3-540-77522-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015703607
    108 https://doi.org/10.1007/978-3-540-77522-5
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/978-3-642-61497-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049517054
    111 https://doi.org/10.1007/978-3-642-61497-2
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01206027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025516040
    114 https://doi.org/10.1007/bf01206027
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf01208288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049431382
    117 https://doi.org/10.1007/bf01208288
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf01213010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034253298
    120 https://doi.org/10.1007/bf01213010
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.1007/bf01221735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008786083
    123 https://doi.org/10.1007/bf01221735
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bf01351346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045253666
    126 https://doi.org/10.1007/bf01351346
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/bf01609485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040883192
    129 https://doi.org/10.1007/bf01609485
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf01877510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043949968
    132 https://doi.org/10.1007/bf01877510
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/bf01940333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052024323
    135 https://doi.org/10.1007/bf01940333
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/bf02099603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049879789
    138 https://doi.org/10.1007/bf02099603
    139 rdf:type schema:CreativeWork
    140 grid-institutes:grid.11348.3f schema:alternateName Institut für Mathematik, Universität Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
    141 schema:name Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA
    142 Institut für Mathematik, Universität Potsdam, Am Neuen Palais 10, 14469, Potsdam, Germany
    143 rdf:type schema:Organization
    144 grid-institutes:grid.27755.32 schema:alternateName Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA
    145 schema:name Department of Mathematics, University of Virginia, 141 Cabell Drive, 22903, Charlottesville, VA, USA
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...