Decision Making Times in Mean-Field Dynamic Ising Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07

AUTHORS

Yuri Bakhtin

ABSTRACT

We consider a dynamic mean-field ferromagnetic model in the low-temperature regime in the neighborhood of the zero magnetization state. We study the random time it takes for the system to make a decision, i.e., to exit the neighborhood of the unstable equilibrium and approach one of the two stable equilibrium points. We prove a limit theorem for the distribution of this random time in the thermodynamic limit. More... »

PAGES

1291-1303

References to SciGraph publications

  • 1989-05. Transient bimodality in interacting particle systems in JOURNAL OF STATISTICAL PHYSICS
  • 1981-03. The exit problem for small random perturbations of dynamical systems with a hyperbolic fixed point in ISRAEL JOURNAL OF MATHEMATICS
  • 2009. Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics in NONE
  • 2011-06. Noisy heteroclinic networks in PROBABILITY THEORY AND RELATED FIELDS
  • 2009-03. On Asymptotic Proximity of Distributions in JOURNAL OF THEORETICAL PROBABILITY
  • Journal

    TITLE

    Annales Henri Poincaré

    ISSUE

    5

    VOLUME

    13

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00023-011-0148-6

    DOI

    http://dx.doi.org/10.1007/s00023-011-0148-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018348749


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Georgia Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Mathematics, Georgia Tech, 30332-0160, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bakhtin", 
            "givenName": "Yuri", 
            "id": "sg:person.01327752120.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00440-010-0264-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000387165", 
              "https://doi.org/10.1007/s00440-010-0264-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10959-008-0178-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005817675", 
              "https://doi.org/10.1007/s10959-008-0178-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02761819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009218457", 
              "https://doi.org/10.1007/bf02761819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01041597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016229464", 
              "https://doi.org/10.1007/bf01041597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442508408833304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018893985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.spa.2007.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026784286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/neco.2008.12-06-420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027305075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-73305-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046123937", 
              "https://doi.org/10.1007/978-3-540-73305-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1046123937", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-4149(95)00063-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046458048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/14689367.2010.482520", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052693718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0951-7715/9/1/003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059110970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176988862", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064403635"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07", 
        "datePublishedReg": "2012-07-01", 
        "description": "We consider a dynamic mean-field ferromagnetic model in the low-temperature regime in the neighborhood of the zero magnetization state. We study the random time it takes for the system to make a decision, i.e., to exit the neighborhood of the unstable equilibrium and approach one of the two stable equilibrium points. We prove a limit theorem for the distribution of this random time in the thermodynamic limit.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00023-011-0148-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1297863", 
            "issn": [
              "1424-0637", 
              "1424-0661"
            ], 
            "name": "Annales Henri Poincar\u00e9", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "Decision Making Times in Mean-Field Dynamic Ising Model", 
        "pagination": "1291-1303", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "576c93245954c1139d62804f616f2e642470a35088b141f40834e61a7c98efa7"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00023-011-0148-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018348749"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00023-011-0148-6", 
          "https://app.dimensions.ai/details/publication/pub.1018348749"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00023-011-0148-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0148-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0148-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0148-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0148-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00023-011-0148-6 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N12c475cc8b664095a15583d429cbfe48
    4 schema:citation sg:pub.10.1007/978-3-540-73305-8
    5 sg:pub.10.1007/bf01041597
    6 sg:pub.10.1007/bf02761819
    7 sg:pub.10.1007/s00440-010-0264-0
    8 sg:pub.10.1007/s10959-008-0178-2
    9 https://app.dimensions.ai/details/publication/pub.1046123937
    10 https://doi.org/10.1016/0304-4149(95)00063-1
    11 https://doi.org/10.1016/j.spa.2007.06.003
    12 https://doi.org/10.1080/14689367.2010.482520
    13 https://doi.org/10.1080/17442508408833304
    14 https://doi.org/10.1088/0951-7715/9/1/003
    15 https://doi.org/10.1162/neco.2008.12-06-420
    16 https://doi.org/10.1214/aop/1176988862
    17 schema:datePublished 2012-07
    18 schema:datePublishedReg 2012-07-01
    19 schema:description We consider a dynamic mean-field ferromagnetic model in the low-temperature regime in the neighborhood of the zero magnetization state. We study the random time it takes for the system to make a decision, i.e., to exit the neighborhood of the unstable equilibrium and approach one of the two stable equilibrium points. We prove a limit theorem for the distribution of this random time in the thermodynamic limit.
    20 schema:genre research_article
    21 schema:inLanguage en
    22 schema:isAccessibleForFree true
    23 schema:isPartOf N363ced45f5474e65b729a3ccac5e2b09
    24 Nd2c5c7bbc8ae41ddbb42541ac54c05fa
    25 sg:journal.1297863
    26 schema:name Decision Making Times in Mean-Field Dynamic Ising Model
    27 schema:pagination 1291-1303
    28 schema:productId N06711206b4374c288415b6c20392925d
    29 Nf63336e2e418498696dce5d5f30584cf
    30 Nff5917dc7da645d8a162e7bc8e9be0e7
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018348749
    32 https://doi.org/10.1007/s00023-011-0148-6
    33 schema:sdDatePublished 2019-04-10T14:57
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher Nb89f1068ba2e470a8a6e963217f9274c
    36 schema:url http://link.springer.com/10.1007/s00023-011-0148-6
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N06711206b4374c288415b6c20392925d schema:name readcube_id
    41 schema:value 576c93245954c1139d62804f616f2e642470a35088b141f40834e61a7c98efa7
    42 rdf:type schema:PropertyValue
    43 N12c475cc8b664095a15583d429cbfe48 rdf:first sg:person.01327752120.28
    44 rdf:rest rdf:nil
    45 N363ced45f5474e65b729a3ccac5e2b09 schema:issueNumber 5
    46 rdf:type schema:PublicationIssue
    47 Nb89f1068ba2e470a8a6e963217f9274c schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nd2c5c7bbc8ae41ddbb42541ac54c05fa schema:volumeNumber 13
    50 rdf:type schema:PublicationVolume
    51 Nf63336e2e418498696dce5d5f30584cf schema:name dimensions_id
    52 schema:value pub.1018348749
    53 rdf:type schema:PropertyValue
    54 Nff5917dc7da645d8a162e7bc8e9be0e7 schema:name doi
    55 schema:value 10.1007/s00023-011-0148-6
    56 rdf:type schema:PropertyValue
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Statistics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1297863 schema:issn 1424-0637
    64 1424-0661
    65 schema:name Annales Henri Poincaré
    66 rdf:type schema:Periodical
    67 sg:person.01327752120.28 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
    68 schema:familyName Bakhtin
    69 schema:givenName Yuri
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327752120.28
    71 rdf:type schema:Person
    72 sg:pub.10.1007/978-3-540-73305-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046123937
    73 https://doi.org/10.1007/978-3-540-73305-8
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01041597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229464
    76 https://doi.org/10.1007/bf01041597
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf02761819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009218457
    79 https://doi.org/10.1007/bf02761819
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1007/s00440-010-0264-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000387165
    82 https://doi.org/10.1007/s00440-010-0264-0
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/s10959-008-0178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005817675
    85 https://doi.org/10.1007/s10959-008-0178-2
    86 rdf:type schema:CreativeWork
    87 https://app.dimensions.ai/details/publication/pub.1046123937 schema:CreativeWork
    88 https://doi.org/10.1016/0304-4149(95)00063-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046458048
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/j.spa.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026784286
    91 rdf:type schema:CreativeWork
    92 https://doi.org/10.1080/14689367.2010.482520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052693718
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.1080/17442508408833304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018893985
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.1088/0951-7715/9/1/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059110970
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.1162/neco.2008.12-06-420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027305075
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.1214/aop/1176988862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064403635
    101 rdf:type schema:CreativeWork
    102 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
    103 schema:name School of Mathematics, Georgia Tech, 30332-0160, Atlanta, GA, USA
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...