A New Recursion Relation for the 6j-Symbol View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

Valentin Bonzom, Etera R. Livine

ABSTRACT

The 6j-symbol is a fundamental object from the re-coupling theory of SU(2) representations. In the limit of large angular momenta, its asymptotics is known to be described by the geometry of a tetrahedron with quantized lengths. This article presents a new recursion formula for the square of the 6j-symbol. In the asymptotic regime, the new recursion is shown to characterize the closure of the relevant tetrahedron. Since the 6j-symbol is the basic building block of the Ponzano–Regge model for pure three-dimensional quantum gravity, we also discuss how to generalize the method to derive more general recursion relations on the full amplitudes. More... »

PAGES

1083-1099

References to SciGraph publications

  • 2000. An Introduction to Spin Foam Models of BF Theory and Quantum Gravity in GEOMETRY AND QUANTUM PHYSICS
  • 2012-06. Bubble Divergences from Twisted Cohomology in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-11. The Ponzano–Regge Asymptotic of the 6j Symbol: An Elementary Proof in ANNALES HENRI POINCARÉ
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00023-011-0143-y

    DOI

    http://dx.doi.org/10.1007/s00023-011-0143-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028675157


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Perimeter Institute", 
              "id": "https://www.grid.ac/institutes/grid.420198.6", 
              "name": [
                "Perimeter Institute, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bonzom", 
            "givenName": "Valentin", 
            "id": "sg:person.0776126335.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Lyon", 
              "id": "https://www.grid.ac/institutes/grid.15140.31", 
              "name": [
                "Perimeter Institute, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada", 
                "Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 All\u00e9e d\u2019Italie, 69007, Lyon, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Livine", 
            "givenName": "Etera R.", 
            "id": "sg:person.015741067717.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741067717.38"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0264-9381/20/7/307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001224370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/19/24/315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002014679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.052114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003363599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.83.052114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003363599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/13/135003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006177965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/13/135003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006177965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2008.05.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007270735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/6/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010899778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/23/6/012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010899778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/43/11/115203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012374871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/43/11/115203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012374871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015011460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.84.024009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015011460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/20/7/303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015557075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/11/11/013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015793211"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.84.022101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016521042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.84.022101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016521042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/21/24/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017569339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/3/035012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017946414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/3/035012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017946414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.532254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020523120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/24/8/006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021744680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-8949/78/05/058103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022895546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0040-9383(92)90015-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028642877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/15/155014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030268121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/26/15/155014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030268121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018739500101566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034510423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018739500101566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034510423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/45/7/075202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036653422"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1477-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037379751", 
              "https://doi.org/10.1007/s00220-012-1477-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/45/6/065209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039179879"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-008-0392-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041759643", 
              "https://doi.org/10.1007/s00023-008-0392-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1499754", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042606596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/28/19/195006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042623690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-46552-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047165694", 
              "https://doi.org/10.1007/3-540-46552-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.045110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047264319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.71.045110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047264319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.024035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048754727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.024035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048754727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/12/125002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051740923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0264-9381/27/12/125002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051740923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511575549.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051944187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp905212a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056116129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp905212a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056116129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp909824h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056118567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp909824h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056118567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/epn:2006302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056967785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.522426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058099446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.522427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058099447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x10049281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062926230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/gt.1999.3.21", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069059799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1999.v3.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456939"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-05", 
        "datePublishedReg": "2012-05-01", 
        "description": "The 6j-symbol is a fundamental object from the re-coupling theory of SU(2) representations. In the limit of large angular momenta, its asymptotics is known to be described by the geometry of a tetrahedron with quantized lengths. This article presents a new recursion formula for the square of the 6j-symbol. In the asymptotic regime, the new recursion is shown to characterize the closure of the relevant tetrahedron. Since the 6j-symbol is the basic building block of the Ponzano\u2013Regge model for pure three-dimensional quantum gravity, we also discuss how to generalize the method to derive more general recursion relations on the full amplitudes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00023-011-0143-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297863", 
            "issn": [
              "1424-0637", 
              "1424-0661"
            ], 
            "name": "Annales Henri Poincar\u00e9", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "13"
          }
        ], 
        "name": "A New Recursion Relation for the 6j-Symbol", 
        "pagination": "1083-1099", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "88992d79ec74d91d87882c2e2d88ac0aa79fc6d17e5d8c17dba3f307dd17d706"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00023-011-0143-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028675157"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00023-011-0143-y", 
          "https://app.dimensions.ai/details/publication/pub.1028675157"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000495.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00023-011-0143-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0143-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0143-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0143-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0143-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    189 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00023-011-0143-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nc4edf0202e324fc5b57a318bbb0c0a49
    4 schema:citation sg:pub.10.1007/3-540-46552-9_2
    5 sg:pub.10.1007/s00023-008-0392-6
    6 sg:pub.10.1007/s00220-012-1477-0
    7 https://doi.org/10.1016/0040-9383(92)90015-a
    8 https://doi.org/10.1016/j.nuclphysb.2008.05.012
    9 https://doi.org/10.1017/cbo9780511575549.018
    10 https://doi.org/10.1021/jp905212a
    11 https://doi.org/10.1021/jp909824h
    12 https://doi.org/10.1051/epn:2006302
    13 https://doi.org/10.1063/1.1499754
    14 https://doi.org/10.1063/1.522426
    15 https://doi.org/10.1063/1.522427
    16 https://doi.org/10.1063/1.532254
    17 https://doi.org/10.1080/00018739500101566
    18 https://doi.org/10.1088/0031-8949/78/05/058103
    19 https://doi.org/10.1088/0264-9381/11/11/013
    20 https://doi.org/10.1088/0264-9381/19/24/315
    21 https://doi.org/10.1088/0264-9381/20/7/303
    22 https://doi.org/10.1088/0264-9381/20/7/307
    23 https://doi.org/10.1088/0264-9381/21/24/002
    24 https://doi.org/10.1088/0264-9381/23/6/012
    25 https://doi.org/10.1088/0264-9381/24/8/006
    26 https://doi.org/10.1088/0264-9381/26/15/155014
    27 https://doi.org/10.1088/0264-9381/27/12/125002
    28 https://doi.org/10.1088/0264-9381/27/13/135003
    29 https://doi.org/10.1088/0264-9381/27/3/035012
    30 https://doi.org/10.1088/0264-9381/28/19/195006
    31 https://doi.org/10.1088/1751-8113/43/11/115203
    32 https://doi.org/10.1088/1751-8113/45/6/065209
    33 https://doi.org/10.1088/1751-8113/45/7/075202
    34 https://doi.org/10.1103/physreva.83.052114
    35 https://doi.org/10.1103/physreva.84.022101
    36 https://doi.org/10.1103/physrevb.71.045110
    37 https://doi.org/10.1103/physrevd.80.024035
    38 https://doi.org/10.1103/physrevd.84.024009
    39 https://doi.org/10.1142/s0217751x10049281
    40 https://doi.org/10.2140/gt.1999.3.21
    41 https://doi.org/10.4310/atmp.1999.v3.n2.a1
    42 schema:datePublished 2012-05
    43 schema:datePublishedReg 2012-05-01
    44 schema:description The 6j-symbol is a fundamental object from the re-coupling theory of SU(2) representations. In the limit of large angular momenta, its asymptotics is known to be described by the geometry of a tetrahedron with quantized lengths. This article presents a new recursion formula for the square of the 6j-symbol. In the asymptotic regime, the new recursion is shown to characterize the closure of the relevant tetrahedron. Since the 6j-symbol is the basic building block of the Ponzano–Regge model for pure three-dimensional quantum gravity, we also discuss how to generalize the method to derive more general recursion relations on the full amplitudes.
    45 schema:genre research_article
    46 schema:inLanguage en
    47 schema:isAccessibleForFree false
    48 schema:isPartOf N2a944f4ee0ae4381ae58b086f41407fe
    49 N9eaa529a5fef4e66a633a7b27edadb84
    50 sg:journal.1297863
    51 schema:name A New Recursion Relation for the 6j-Symbol
    52 schema:pagination 1083-1099
    53 schema:productId N382e25debf2d4cd38578b9a13a976499
    54 Ne519da0272f04e83a8e06ccc4d1aedfc
    55 Nf2b83c6ed64140cf849c5cbb24c4efd6
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028675157
    57 https://doi.org/10.1007/s00023-011-0143-y
    58 schema:sdDatePublished 2019-04-10T17:28
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher N19ae660f6a9041aa9606cf5b0bb36c7e
    61 schema:url http://link.springer.com/10.1007/s00023-011-0143-y
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N19ae660f6a9041aa9606cf5b0bb36c7e schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N2a944f4ee0ae4381ae58b086f41407fe schema:issueNumber 4
    68 rdf:type schema:PublicationIssue
    69 N382e25debf2d4cd38578b9a13a976499 schema:name dimensions_id
    70 schema:value pub.1028675157
    71 rdf:type schema:PropertyValue
    72 N7cd93d351fdc4d18bcde431bae35400b rdf:first sg:person.015741067717.38
    73 rdf:rest rdf:nil
    74 N9eaa529a5fef4e66a633a7b27edadb84 schema:volumeNumber 13
    75 rdf:type schema:PublicationVolume
    76 Nc4edf0202e324fc5b57a318bbb0c0a49 rdf:first sg:person.0776126335.37
    77 rdf:rest N7cd93d351fdc4d18bcde431bae35400b
    78 Ne519da0272f04e83a8e06ccc4d1aedfc schema:name doi
    79 schema:value 10.1007/s00023-011-0143-y
    80 rdf:type schema:PropertyValue
    81 Nf2b83c6ed64140cf849c5cbb24c4efd6 schema:name readcube_id
    82 schema:value 88992d79ec74d91d87882c2e2d88ac0aa79fc6d17e5d8c17dba3f307dd17d706
    83 rdf:type schema:PropertyValue
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Pure Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1297863 schema:issn 1424-0637
    91 1424-0661
    92 schema:name Annales Henri Poincaré
    93 rdf:type schema:Periodical
    94 sg:person.015741067717.38 schema:affiliation https://www.grid.ac/institutes/grid.15140.31
    95 schema:familyName Livine
    96 schema:givenName Etera R.
    97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015741067717.38
    98 rdf:type schema:Person
    99 sg:person.0776126335.37 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
    100 schema:familyName Bonzom
    101 schema:givenName Valentin
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37
    103 rdf:type schema:Person
    104 sg:pub.10.1007/3-540-46552-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047165694
    105 https://doi.org/10.1007/3-540-46552-9_2
    106 rdf:type schema:CreativeWork
    107 sg:pub.10.1007/s00023-008-0392-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041759643
    108 https://doi.org/10.1007/s00023-008-0392-6
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/s00220-012-1477-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037379751
    111 https://doi.org/10.1007/s00220-012-1477-0
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0040-9383(92)90015-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1028642877
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.nuclphysb.2008.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007270735
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1017/cbo9780511575549.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051944187
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1021/jp905212a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056116129
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1021/jp909824h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056118567
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1051/epn:2006302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056967785
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1063/1.1499754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042606596
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1063/1.522426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099446
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1063/1.522427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099447
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1063/1.532254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020523120
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1080/00018739500101566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034510423
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1088/0031-8949/78/05/058103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022895546
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1088/0264-9381/11/11/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015793211
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1088/0264-9381/19/24/315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002014679
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1088/0264-9381/20/7/303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015557075
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1088/0264-9381/20/7/307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001224370
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1088/0264-9381/21/24/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569339
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/0264-9381/23/6/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010899778
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/0264-9381/24/8/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021744680
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/0264-9381/26/15/155014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030268121
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1088/0264-9381/27/12/125002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740923
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1088/0264-9381/27/13/135003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006177965
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1088/0264-9381/27/3/035012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017946414
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1088/0264-9381/28/19/195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042623690
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1088/1751-8113/43/11/115203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012374871
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1088/1751-8113/45/6/065209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039179879
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1088/1751-8113/45/7/075202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036653422
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physreva.83.052114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003363599
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1103/physreva.84.022101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016521042
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1103/physrevb.71.045110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047264319
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1103/physrevd.80.024035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048754727
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1103/physrevd.84.024009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015011460
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1142/s0217751x10049281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062926230
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.2140/gt.1999.3.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059799
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.4310/atmp.1999.v3.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456939
    182 rdf:type schema:CreativeWork
    183 https://www.grid.ac/institutes/grid.15140.31 schema:alternateName École Normale Supérieure de Lyon
    184 schema:name Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d’Italie, 69007, Lyon, France
    185 Perimeter Institute, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada
    186 rdf:type schema:Organization
    187 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
    188 schema:name Perimeter Institute, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada
    189 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...