Bubble Divergences: Sorting out Topology from Cell Structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

Valentin Bonzom, Matteo Smerlak

ABSTRACT

We conclude our analysis of bubble divergences in the flat spinfoam model. In Bonzom and Smerlak, Comm. Math. Phys., (submitted), we showed that the divergence degree of an arbitrary 2-complex Γ can be evaluated exactly by means of twisted cohomology. Here, we specialize this result to the case where Γ is the 2-skeleton of the cell decomposition of a pseudomanifold, and sharpen it with a careful analysis of the cellular and topological structures involved. Moreover, we explain in detail how this approach reproduces all the previous powercounting results for the Boulatov–Ooguri (colored) tensor models, and sheds light on algebraic-topological aspects of Gurau’s 1/N expansion. More... »

PAGES

185-208

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00023-011-0127-y

DOI

http://dx.doi.org/10.1007/s00023-011-0127-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000425261


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Perimeter Institute", 
          "id": "https://www.grid.ac/institutes/grid.420198.6", 
          "name": [
            "Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonzom", 
        "givenName": "Valentin", 
        "id": "sg:person.0776126335.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Physique Th\u00e9orique", 
          "id": "https://www.grid.ac/institutes/grid.469407.8", 
          "name": [
            "Centre de Physique Th\u00e9orique, Campus de Luminy, Case 907, 13288, Marseille Cedex 09, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smerlak", 
        "givenName": "Matteo", 
        "id": "sg:person.0762122071.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762122071.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0012-365x(93)e0146-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003094591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511575549.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004212715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-011-1226-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006175848", 
          "https://doi.org/10.1007/s00220-011-1226-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-011-0118-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010637437", 
          "https://doi.org/10.1007/s00023-011-0118-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.044007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012636496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.80.044007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012636496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-010-0414-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013956421", 
          "https://doi.org/10.1007/s11005-010-0414-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/26/18/185012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/26/18/185012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/21/24/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-010-1487-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019261548", 
          "https://doi.org/10.1140/epjc/s10052-010-1487-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjc/s10052-010-1487-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019261548", 
          "https://doi.org/10.1140/epjc/s10052-010-1487-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/15/155012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/15/155012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/26/15/155014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030268121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/26/15/155014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030268121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/95/50004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031471874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/23/235023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035145535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/27/23/235023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035145535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(01)00030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035591130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1477-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037379751", 
          "https://doi.org/10.1007/s00220-012-1477-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00023-011-0101-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038599974", 
          "https://doi.org/10.1007/s00023-011-0101-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.83.104051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevd.83.104051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-005-8894-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039382951", 
          "https://doi.org/10.1007/s10773-005-8894-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-005-8894-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039382951", 
          "https://doi.org/10.1007/s10773-005-8894-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0264-9381/28/17/178001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048212502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1290053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057692323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392001324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732392004171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062918942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/qt/38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072320016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.2136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073137894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511755804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741993"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02", 
    "datePublishedReg": "2012-02-01", 
    "description": "We conclude our analysis of bubble divergences in the flat spinfoam model. In Bonzom and Smerlak, Comm. Math. Phys., (submitted), we showed that the divergence degree of an arbitrary 2-complex \u0393 can be evaluated exactly by means of twisted cohomology. Here, we specialize this result to the case where \u0393 is the 2-skeleton of the cell decomposition of a pseudomanifold, and sharpen it with a careful analysis of the cellular and topological structures involved. Moreover, we explain in detail how this approach reproduces all the previous powercounting results for the Boulatov\u2013Ooguri (colored) tensor models, and sheds light on algebraic-topological aspects of Gurau\u2019s 1/N expansion.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00023-011-0127-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297863", 
        "issn": [
          "1424-0637", 
          "1424-0661"
        ], 
        "name": "Annales Henri Poincar\u00e9", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "Bubble Divergences: Sorting out Topology from Cell Structure", 
    "pagination": "185-208", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "02060fad7e3f2dfdeaabde80b54cf74dc5ecefe2cdf1bb2109112182fda4d552"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00023-011-0127-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000425261"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00023-011-0127-y", 
      "https://app.dimensions.ai/details/publication/pub.1000425261"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00023-011-0127-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0127-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0127-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0127-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00023-011-0127-y'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00023-011-0127-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3de4c303a28248769d722d9a5686447c
4 schema:citation sg:pub.10.1007/s00023-011-0101-8
5 sg:pub.10.1007/s00023-011-0118-z
6 sg:pub.10.1007/s00220-011-1226-9
7 sg:pub.10.1007/s00220-012-1477-0
8 sg:pub.10.1007/s10773-005-8894-1
9 sg:pub.10.1007/s11005-010-0414-4
10 sg:pub.10.1140/epjc/s10052-010-1487-z
11 https://doi.org/10.1016/0012-365x(93)e0146-u
12 https://doi.org/10.1016/s0550-3213(01)00030-x
13 https://doi.org/10.1017/cbo9780511575549.020
14 https://doi.org/10.1017/cbo9780511755804
15 https://doi.org/10.1063/1.1290053
16 https://doi.org/10.1088/0264-9381/21/24/002
17 https://doi.org/10.1088/0264-9381/26/15/155014
18 https://doi.org/10.1088/0264-9381/26/18/185012
19 https://doi.org/10.1088/0264-9381/27/15/155012
20 https://doi.org/10.1088/0264-9381/27/23/235023
21 https://doi.org/10.1088/0264-9381/28/17/178001
22 https://doi.org/10.1103/physrevd.80.044007
23 https://doi.org/10.1103/physrevd.83.104051
24 https://doi.org/10.1142/s0217732392001324
25 https://doi.org/10.1142/s0217732392004171
26 https://doi.org/10.1209/0295-5075/95/50004
27 https://doi.org/10.4171/qt/38
28 https://doi.org/10.5802/aif.2136
29 schema:datePublished 2012-02
30 schema:datePublishedReg 2012-02-01
31 schema:description We conclude our analysis of bubble divergences in the flat spinfoam model. In Bonzom and Smerlak, Comm. Math. Phys., (submitted), we showed that the divergence degree of an arbitrary 2-complex Γ can be evaluated exactly by means of twisted cohomology. Here, we specialize this result to the case where Γ is the 2-skeleton of the cell decomposition of a pseudomanifold, and sharpen it with a careful analysis of the cellular and topological structures involved. Moreover, we explain in detail how this approach reproduces all the previous powercounting results for the Boulatov–Ooguri (colored) tensor models, and sheds light on algebraic-topological aspects of Gurau’s 1/N expansion.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N1ff669059770443d82a15c4a3d678485
36 N8442244dc1d044cdb3a07946932b2257
37 sg:journal.1297863
38 schema:name Bubble Divergences: Sorting out Topology from Cell Structure
39 schema:pagination 185-208
40 schema:productId N31f80edabba145bfafdabdf2a059176c
41 N5d74121e6ec84b10b94b3133bfe2dfe3
42 Na3b4c46e65424caf9c7d052d487e4989
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000425261
44 https://doi.org/10.1007/s00023-011-0127-y
45 schema:sdDatePublished 2019-04-10T19:53
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Naa257b8754114c39a37bccc02fa544e3
48 schema:url http://link.springer.com/10.1007/s00023-011-0127-y
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N1ff669059770443d82a15c4a3d678485 schema:volumeNumber 13
53 rdf:type schema:PublicationVolume
54 N31f80edabba145bfafdabdf2a059176c schema:name doi
55 schema:value 10.1007/s00023-011-0127-y
56 rdf:type schema:PropertyValue
57 N3de4c303a28248769d722d9a5686447c rdf:first sg:person.0776126335.37
58 rdf:rest Nbcb6d92910a94fd2ae19402aba1ab539
59 N5d74121e6ec84b10b94b3133bfe2dfe3 schema:name readcube_id
60 schema:value 02060fad7e3f2dfdeaabde80b54cf74dc5ecefe2cdf1bb2109112182fda4d552
61 rdf:type schema:PropertyValue
62 N8442244dc1d044cdb3a07946932b2257 schema:issueNumber 1
63 rdf:type schema:PublicationIssue
64 Na3b4c46e65424caf9c7d052d487e4989 schema:name dimensions_id
65 schema:value pub.1000425261
66 rdf:type schema:PropertyValue
67 Naa257b8754114c39a37bccc02fa544e3 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Nbcb6d92910a94fd2ae19402aba1ab539 rdf:first sg:person.0762122071.47
70 rdf:rest rdf:nil
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:journal.1297863 schema:issn 1424-0637
78 1424-0661
79 schema:name Annales Henri Poincaré
80 rdf:type schema:Periodical
81 sg:person.0762122071.47 schema:affiliation https://www.grid.ac/institutes/grid.469407.8
82 schema:familyName Smerlak
83 schema:givenName Matteo
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762122071.47
85 rdf:type schema:Person
86 sg:person.0776126335.37 schema:affiliation https://www.grid.ac/institutes/grid.420198.6
87 schema:familyName Bonzom
88 schema:givenName Valentin
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776126335.37
90 rdf:type schema:Person
91 sg:pub.10.1007/s00023-011-0101-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038599974
92 https://doi.org/10.1007/s00023-011-0101-8
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s00023-011-0118-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010637437
95 https://doi.org/10.1007/s00023-011-0118-z
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00220-011-1226-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006175848
98 https://doi.org/10.1007/s00220-011-1226-9
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00220-012-1477-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037379751
101 https://doi.org/10.1007/s00220-012-1477-0
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10773-005-8894-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039382951
104 https://doi.org/10.1007/s10773-005-8894-1
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11005-010-0414-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013956421
107 https://doi.org/10.1007/s11005-010-0414-4
108 rdf:type schema:CreativeWork
109 sg:pub.10.1140/epjc/s10052-010-1487-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019261548
110 https://doi.org/10.1140/epjc/s10052-010-1487-z
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0012-365x(93)e0146-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1003094591
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0550-3213(01)00030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035591130
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/cbo9780511575549.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004212715
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/cbo9780511755804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741993
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1290053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057692323
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0264-9381/21/24/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569339
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0264-9381/26/15/155014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030268121
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0264-9381/26/18/185012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016838168
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0264-9381/27/15/155012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942989
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0264-9381/27/23/235023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035145535
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/0264-9381/28/17/178001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048212502
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevd.80.044007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012636496
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevd.83.104051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039281097
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1142/s0217732392001324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918657
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1142/s0217732392004171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062918942
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1209/0295-5075/95/50004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031471874
143 rdf:type schema:CreativeWork
144 https://doi.org/10.4171/qt/38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072320016
145 rdf:type schema:CreativeWork
146 https://doi.org/10.5802/aif.2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073137894
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.420198.6 schema:alternateName Perimeter Institute
149 schema:name Perimeter Institute for Theoretical Physics, 31 Caroline St. N, N2L 2Y5, Waterloo, ON, Canada
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.469407.8 schema:alternateName Centre de Physique Théorique
152 schema:name Centre de Physique Théorique, Campus de Luminy, Case 907, 13288, Marseille Cedex 09, France
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...