Almost CoKähler manifolds satisfying Miao-Tam equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Debabrata Kar, Pradip Majhi

ABSTRACT

The aim of the present paper is to classify almost CoKähler manifolds satisfying Miao-Tam equation. We find the expression of the curvature tensor in an almost CoKähler manifold of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0. We prove that gradient of λ is pointwise collinear with ξ. As a consequence, we obtain that the potential function λ is constant. Finally, we show that the solution of the Miao-Tam equation on almost CoKähler manifolds of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0 is either trivial or Einstein. More... »

PAGES

4

References to SciGraph publications

  • 1987. Einstein Manifolds in NONE
  • 2015-10. Bach-Flat Critical Metrics of the Volume Functional on 4-Dimensional Manifolds with Boundary in THE JOURNAL OF GEOMETRIC ANALYSIS
  • 2016-10. A Generalization of the Goldberg Conjecture for CoKähler Manifolds in MEDITERRANEAN JOURNAL OF MATHEMATICS
  • 2009-10. On the volume functional of compact manifolds with boundary with constant scalar curvature in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • 1995-10. Contact metric manifolds satisfying a nullity condition in ISRAEL JOURNAL OF MATHEMATICS
  • 1976. Contact Manifolds in Riemannian Geometry in NONE
  • Journal

    TITLE

    Journal of Geometry

    ISSUE

    1

    VOLUME

    110

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0

    DOI

    http://dx.doi.org/10.1007/s00022-018-0460-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110421576


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Human Geography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Studies in Human Society", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, 700019, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kar", 
            "givenName": "Debabrata", 
            "id": "sg:person.010655515424.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655515424.64"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Calcutta", 
              "id": "https://www.grid.ac/institutes/grid.59056.3f", 
              "name": [
                "Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, 700019, Kolkata, West Bengal, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Majhi", 
            "givenName": "Pradip", 
            "id": "sg:person.010015054343.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015054343.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00009-015-0646-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019002028", 
              "https://doi.org/10.1007/s00009-015-0646-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-008-0221-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027629504", 
              "https://doi.org/10.1007/s00526-008-0221-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00526-008-0221-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027629504", 
              "https://doi.org/10.1007/s00526-008-0221-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12220-014-9532-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027789272", 
              "https://doi.org/10.1007/s12220-014-9532-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02761646", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041663194", 
              "https://doi.org/10.1007/bf02761646"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043145358", 
              "https://doi.org/10.1007/bfb0079307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0079307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043145358", 
              "https://doi.org/10.1007/bfb0079307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74311-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048660547", 
              "https://doi.org/10.1007/978-3-540-74311-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-74311-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048660547", 
              "https://doi.org/10.1007/978-3-540-74311-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3906/mat-1504-73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071568998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/ap3704-11-2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072180312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4064/bc69-0-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099285399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/fil1715695w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101870202"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-04", 
        "datePublishedReg": "2019-04-01", 
        "description": "The aim of the present paper is to classify almost CoK\u00e4hler manifolds satisfying Miao-Tam equation. We find the expression of the curvature tensor in an almost CoK\u00e4hler manifold of dimension greater than 3 with \u03be belonging to the (k,\u03bc)-nullity distribution and k<0. We prove that gradient of \u03bb is pointwise collinear with \u03be. As a consequence, we obtain that the potential function \u03bb is constant. Finally, we show that the solution of the Miao-Tam equation on almost CoK\u00e4hler manifolds of dimension greater than 3 with \u03be belonging to the (k,\u03bc)-nullity distribution and k<0 is either trivial or Einstein.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00022-018-0460-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136282", 
            "issn": [
              "0047-2468", 
              "1420-8997"
            ], 
            "name": "Journal of Geometry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "110"
          }
        ], 
        "name": "Almost CoK\u00e4hler manifolds satisfying Miao-Tam equation", 
        "pagination": "4", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110421576"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00022-018-0460-0"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "1696040289ca53839e903848a7ca2ac650e6a0646c53cebbcf7368a7994c6e57"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00022-018-0460-0", 
          "https://app.dimensions.ai/details/publication/pub.1110421576"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-16T06:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106825_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00022-018-0460-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00022-018-0460-0 schema:about anzsrc-for:16
    2 anzsrc-for:1604
    3 schema:author N20e86104279044d99c062d8daeee8901
    4 schema:citation sg:pub.10.1007/978-3-540-74311-8
    5 sg:pub.10.1007/bf02761646
    6 sg:pub.10.1007/bfb0079307
    7 sg:pub.10.1007/s00009-015-0646-8
    8 sg:pub.10.1007/s00526-008-0221-2
    9 sg:pub.10.1007/s12220-014-9532-z
    10 https://doi.org/10.2298/fil1715695w
    11 https://doi.org/10.3906/mat-1504-73
    12 https://doi.org/10.4064/ap3704-11-2015
    13 https://doi.org/10.4064/bc69-0-17
    14 schema:datePublished 2019-04
    15 schema:datePublishedReg 2019-04-01
    16 schema:description The aim of the present paper is to classify almost CoKähler manifolds satisfying Miao-Tam equation. We find the expression of the curvature tensor in an almost CoKähler manifold of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0. We prove that gradient of λ is pointwise collinear with ξ. As a consequence, we obtain that the potential function λ is constant. Finally, we show that the solution of the Miao-Tam equation on almost CoKähler manifolds of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0 is either trivial or Einstein.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N48b123c8576d4685a869cf18536a80a8
    21 Nc28cfc7529b94ab3b156f63e2704333a
    22 sg:journal.1136282
    23 schema:name Almost CoKähler manifolds satisfying Miao-Tam equation
    24 schema:pagination 4
    25 schema:productId N22300262b101453195a318e23124a7bc
    26 N33a6d899abb646398f9ebbd57938f86d
    27 Nd1727c7ff0c44cac9d1b38950a6570c6
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110421576
    29 https://doi.org/10.1007/s00022-018-0460-0
    30 schema:sdDatePublished 2019-04-16T06:23
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N3e5ecee6f8c64c5b905e282cda67e88b
    33 schema:url https://link.springer.com/10.1007%2Fs00022-018-0460-0
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N20e86104279044d99c062d8daeee8901 rdf:first sg:person.010655515424.64
    38 rdf:rest Ne053cc71547844b0b1942abb33cb7a09
    39 N22300262b101453195a318e23124a7bc schema:name readcube_id
    40 schema:value 1696040289ca53839e903848a7ca2ac650e6a0646c53cebbcf7368a7994c6e57
    41 rdf:type schema:PropertyValue
    42 N33a6d899abb646398f9ebbd57938f86d schema:name dimensions_id
    43 schema:value pub.1110421576
    44 rdf:type schema:PropertyValue
    45 N3e5ecee6f8c64c5b905e282cda67e88b schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N48b123c8576d4685a869cf18536a80a8 schema:issueNumber 1
    48 rdf:type schema:PublicationIssue
    49 Nc28cfc7529b94ab3b156f63e2704333a schema:volumeNumber 110
    50 rdf:type schema:PublicationVolume
    51 Nd1727c7ff0c44cac9d1b38950a6570c6 schema:name doi
    52 schema:value 10.1007/s00022-018-0460-0
    53 rdf:type schema:PropertyValue
    54 Ne053cc71547844b0b1942abb33cb7a09 rdf:first sg:person.010015054343.76
    55 rdf:rest rdf:nil
    56 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Studies in Human Society
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:1604 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Human Geography
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136282 schema:issn 0047-2468
    63 1420-8997
    64 schema:name Journal of Geometry
    65 rdf:type schema:Periodical
    66 sg:person.010015054343.76 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    67 schema:familyName Majhi
    68 schema:givenName Pradip
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015054343.76
    70 rdf:type schema:Person
    71 sg:person.010655515424.64 schema:affiliation https://www.grid.ac/institutes/grid.59056.3f
    72 schema:familyName Kar
    73 schema:givenName Debabrata
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655515424.64
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-3-540-74311-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048660547
    77 https://doi.org/10.1007/978-3-540-74311-8
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/bf02761646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041663194
    80 https://doi.org/10.1007/bf02761646
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bfb0079307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043145358
    83 https://doi.org/10.1007/bfb0079307
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/s00009-015-0646-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019002028
    86 https://doi.org/10.1007/s00009-015-0646-8
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/s00526-008-0221-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027629504
    89 https://doi.org/10.1007/s00526-008-0221-2
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s12220-014-9532-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1027789272
    92 https://doi.org/10.1007/s12220-014-9532-z
    93 rdf:type schema:CreativeWork
    94 https://doi.org/10.2298/fil1715695w schema:sameAs https://app.dimensions.ai/details/publication/pub.1101870202
    95 rdf:type schema:CreativeWork
    96 https://doi.org/10.3906/mat-1504-73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071568998
    97 rdf:type schema:CreativeWork
    98 https://doi.org/10.4064/ap3704-11-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072180312
    99 rdf:type schema:CreativeWork
    100 https://doi.org/10.4064/bc69-0-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099285399
    101 rdf:type schema:CreativeWork
    102 https://www.grid.ac/institutes/grid.59056.3f schema:alternateName University of Calcutta
    103 schema:name Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, 700019, Kolkata, West Bengal, India
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...