Ontology type: schema:ScholarlyArticle
2019-04
AUTHORS ABSTRACTThe aim of the present paper is to classify almost CoKähler manifolds satisfying Miao-Tam equation. We find the expression of the curvature tensor in an almost CoKähler manifold of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0. We prove that gradient of λ is pointwise collinear with ξ. As a consequence, we obtain that the potential function λ is constant. Finally, we show that the solution of the Miao-Tam equation on almost CoKähler manifolds of dimension greater than 3 with ξ belonging to the (k,μ)-nullity distribution and k<0 is either trivial or Einstein. More... »
PAGES4
http://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0
DOIhttp://dx.doi.org/10.1007/s00022-018-0460-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1110421576
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1604",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Human Geography",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Studies in Human Society",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Calcutta",
"id": "https://www.grid.ac/institutes/grid.59056.3f",
"name": [
"Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, 700019, Kolkata, West Bengal, India"
],
"type": "Organization"
},
"familyName": "Kar",
"givenName": "Debabrata",
"id": "sg:person.010655515424.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655515424.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Calcutta",
"id": "https://www.grid.ac/institutes/grid.59056.3f",
"name": [
"Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, 700019, Kolkata, West Bengal, India"
],
"type": "Organization"
},
"familyName": "Majhi",
"givenName": "Pradip",
"id": "sg:person.010015054343.76",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010015054343.76"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00009-015-0646-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019002028",
"https://doi.org/10.1007/s00009-015-0646-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-008-0221-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027629504",
"https://doi.org/10.1007/s00526-008-0221-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00526-008-0221-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027629504",
"https://doi.org/10.1007/s00526-008-0221-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s12220-014-9532-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027789272",
"https://doi.org/10.1007/s12220-014-9532-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02761646",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041663194",
"https://doi.org/10.1007/bf02761646"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0079307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043145358",
"https://doi.org/10.1007/bfb0079307"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0079307",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043145358",
"https://doi.org/10.1007/bfb0079307"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74311-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048660547",
"https://doi.org/10.1007/978-3-540-74311-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-74311-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048660547",
"https://doi.org/10.1007/978-3-540-74311-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3906/mat-1504-73",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071568998"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/ap3704-11-2015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072180312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4064/bc69-0-17",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1099285399"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2298/fil1715695w",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101870202"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "The aim of the present paper is to classify almost CoK\u00e4hler manifolds satisfying Miao-Tam equation. We find the expression of the curvature tensor in an almost CoK\u00e4hler manifold of dimension greater than 3 with \u03be belonging to the (k,\u03bc)-nullity distribution and k<0. We prove that gradient of \u03bb is pointwise collinear with \u03be. As a consequence, we obtain that the potential function \u03bb is constant. Finally, we show that the solution of the Miao-Tam equation on almost CoK\u00e4hler manifolds of dimension greater than 3 with \u03be belonging to the (k,\u03bc)-nullity distribution and k<0 is either trivial or Einstein.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00022-018-0460-0",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136282",
"issn": [
"0047-2468",
"1420-8997"
],
"name": "Journal of Geometry",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "110"
}
],
"name": "Almost CoK\u00e4hler manifolds satisfying Miao-Tam equation",
"pagination": "4",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1110421576"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00022-018-0460-0"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"1696040289ca53839e903848a7ca2ac650e6a0646c53cebbcf7368a7994c6e57"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00022-018-0460-0",
"https://app.dimensions.ai/details/publication/pub.1110421576"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-16T06:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000377_0000000377/records_106825_00000002.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00022-018-0460-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00022-018-0460-0'
This table displays all metadata directly associated to this object as RDF triples.
104 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES