Equilibrium Configurations for a Floating Drop View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-12

AUTHORS

Alan Elcrat, Robert Neel, David Siegel

ABSTRACT

If a drop of fluid of density ρ1 rests on the surface of a fluid of density ρ2 below a fluid of density ρ0, ρ0 < ρ1 < ρ2, the surface of the drop is made up of a sessile drop and an inverted sessile drop which match an external capillary surface. Solutions of this problem are constructed by matching solutions of the axisymmetric capillary surface equation. For general values of the surface tensions at the common boundaries of the three fluids the surfaces need not be graphs and the profiles of these axisymmetric surfaces are parametrized by their tangent angles. The solutions are obtained by finding the value of the tangent angle for which the three surfaces match. In addition the asymptotic form of the solution is found for small drops. More... »

PAGES

405-429

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00021-004-0119-5

DOI

http://dx.doi.org/10.1007/s00021-004-0119-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009270939


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Wichita State University", 
          "id": "https://www.grid.ac/institutes/grid.268246.c", 
          "name": [
            "Department of Mathematics and Statistics, Wichita State University, 67260-0033, Wichita, KA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elcrat", 
        "givenName": "Alan", 
        "id": "sg:person.0656644736.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656644736.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Mathematics, Harvard University, 02138-2901, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Neel", 
        "givenName": "Robert", 
        "id": "sg:person.013233270567.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233270567.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegel", 
        "givenName": "David", 
        "id": "sg:person.01242363771.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-12", 
    "datePublishedReg": "2004-12-01", 
    "description": "If a drop of fluid of density \u03c11 rests on the surface of a fluid of density \u03c12 below a fluid of density \u03c10, \u03c10 < \u03c11 < \u03c12, the surface of the drop is made up of a sessile drop and an inverted sessile drop which match an external capillary surface. Solutions of this problem are constructed by matching solutions of the axisymmetric capillary surface equation. For general values of the surface tensions at the common boundaries of the three fluids the surfaces need not be graphs and the profiles of these axisymmetric surfaces are parametrized by their tangent angles. The solutions are obtained by finding the value of the tangent angle for which the three surfaces match. In addition the asymptotic form of the solution is found for small drops.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00021-004-0119-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136315", 
        "issn": [
          "1422-6928", 
          "1422-6952"
        ], 
        "name": "Journal of Mathematical Fluid Mechanics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "Equilibrium Configurations for a Floating Drop", 
    "pagination": "405-429", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c29c99d6f30974859ec38fbf3fb995301d6fb9f8c96116dafd4dc2f66d89379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00021-004-0119-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009270939"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00021-004-0119-5", 
      "https://app.dimensions.ai/details/publication/pub.1009270939"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000486.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00021-004-0119-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00021-004-0119-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00021-004-0119-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00021-004-0119-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00021-004-0119-5'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00021-004-0119-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N14e2ee96dff4463b81a6eaf5250e98ea
4 schema:datePublished 2004-12
5 schema:datePublishedReg 2004-12-01
6 schema:description If a drop of fluid of density ρ1 rests on the surface of a fluid of density ρ2 below a fluid of density ρ0, ρ0 < ρ1 < ρ2, the surface of the drop is made up of a sessile drop and an inverted sessile drop which match an external capillary surface. Solutions of this problem are constructed by matching solutions of the axisymmetric capillary surface equation. For general values of the surface tensions at the common boundaries of the three fluids the surfaces need not be graphs and the profiles of these axisymmetric surfaces are parametrized by their tangent angles. The solutions are obtained by finding the value of the tangent angle for which the three surfaces match. In addition the asymptotic form of the solution is found for small drops.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree true
10 schema:isPartOf N551cf5aa93684ce193d2d41ebc843ea3
11 Nb9b5becdfbce48048269e52fecf9d6bf
12 sg:journal.1136315
13 schema:name Equilibrium Configurations for a Floating Drop
14 schema:pagination 405-429
15 schema:productId N81895d4743a1456eb847a462401dd0c1
16 N90565ee055d243d7b8e3a835b3446eef
17 N984972b29a784113b7c9c4d67e6408d4
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009270939
19 https://doi.org/10.1007/s00021-004-0119-5
20 schema:sdDatePublished 2019-04-11T01:01
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nc8f86af020e1426489f13a00ec1860c0
23 schema:url http://link.springer.com/10.1007/s00021-004-0119-5
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N14e2ee96dff4463b81a6eaf5250e98ea rdf:first sg:person.0656644736.24
28 rdf:rest N39ebd5099aec4efeaef201e8ad8b7707
29 N39ebd5099aec4efeaef201e8ad8b7707 rdf:first sg:person.013233270567.49
30 rdf:rest N8d63724f9f2442109b13d729a9fe0d6e
31 N551cf5aa93684ce193d2d41ebc843ea3 schema:issueNumber 4
32 rdf:type schema:PublicationIssue
33 N81895d4743a1456eb847a462401dd0c1 schema:name dimensions_id
34 schema:value pub.1009270939
35 rdf:type schema:PropertyValue
36 N8d63724f9f2442109b13d729a9fe0d6e rdf:first sg:person.01242363771.96
37 rdf:rest rdf:nil
38 N90565ee055d243d7b8e3a835b3446eef schema:name readcube_id
39 schema:value 2c29c99d6f30974859ec38fbf3fb995301d6fb9f8c96116dafd4dc2f66d89379
40 rdf:type schema:PropertyValue
41 N984972b29a784113b7c9c4d67e6408d4 schema:name doi
42 schema:value 10.1007/s00021-004-0119-5
43 rdf:type schema:PropertyValue
44 Nb9b5becdfbce48048269e52fecf9d6bf schema:volumeNumber 6
45 rdf:type schema:PublicationVolume
46 Nc8f86af020e1426489f13a00ec1860c0 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
49 schema:name Chemical Sciences
50 rdf:type schema:DefinedTerm
51 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
52 schema:name Physical Chemistry (incl. Structural)
53 rdf:type schema:DefinedTerm
54 sg:journal.1136315 schema:issn 1422-6928
55 1422-6952
56 schema:name Journal of Mathematical Fluid Mechanics
57 rdf:type schema:Periodical
58 sg:person.01242363771.96 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
59 schema:familyName Siegel
60 schema:givenName David
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242363771.96
62 rdf:type schema:Person
63 sg:person.013233270567.49 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
64 schema:familyName Neel
65 schema:givenName Robert
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013233270567.49
67 rdf:type schema:Person
68 sg:person.0656644736.24 schema:affiliation https://www.grid.ac/institutes/grid.268246.c
69 schema:familyName Elcrat
70 schema:givenName Alan
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656644736.24
72 rdf:type schema:Person
73 https://www.grid.ac/institutes/grid.268246.c schema:alternateName Wichita State University
74 schema:name Department of Mathematics and Statistics, Wichita State University, 67260-0033, Wichita, KA, USA
75 rdf:type schema:Organization
76 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
77 schema:name Department of Mathematics, Harvard University, 02138-2901, Cambridge, MA, USA
78 rdf:type schema:Organization
79 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
80 schema:name Department of Applied Mathematics, University of Waterloo, N2L 3G1, Waterloo, ON, Canada
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...