A Bitangential Interpolation Problem on the Closed Unit Ball for Multipliers of the Arveson Space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-06

AUTHORS

Joseph A. Ball, Vladimir Bolotnikov

ABSTRACT

We solve a bitangential interpolation problem for contractive multipliers on the Arveson space with an arbitrary interpolating set in the closed unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{B}^{d}\, of\, \mathbb{C}^{d} $\end{document}. The solvability criterion is established in terms of positive kernels. The set of all solutions is parametrized by a Redheffer transform. More... »

PAGES

125-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s000200300022

DOI

http://dx.doi.org/10.1007/s000200300022

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039754329


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Polytechnic Institute, Blacksburg, VA 24061-0123, USA. E-mail: ball@calvin.math.vt.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "id": "sg:person.013713536413.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795, USA. E-mail: vladi@math.wm.edu, US"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s0013091500028418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015900152"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-06", 
    "datePublishedReg": "2003-06-01", 
    "description": "We solve a bitangential interpolation problem for contractive multipliers on the Arveson space with an arbitrary interpolating set in the closed unit ball \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$ \\mathbb{B}^{d}\\, of\\, \\mathbb{C}^{d} $\\end{document}. The solvability criterion is established in terms of positive kernels. The set of all solutions is parametrized by a Redheffer transform.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s000200300022", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "A Bitangential Interpolation Problem on the Closed Unit Ball for Multipliers of the Arveson Space", 
    "pagination": "125-164", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bd5f1f10ae1074b9d7fcd581ac98ef2cbffb4238df56aeed4e08ca9078c3d348"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s000200300022"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039754329"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s000200300022", 
      "https://app.dimensions.ai/details/publication/pub.1039754329"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s000200300022"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s000200300022'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s000200300022'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s000200300022'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s000200300022'


 

This table displays all metadata directly associated to this object as RDF triples.

74 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s000200300022 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N7d6f602c1a984d9b8a120bcbd91b2d4a
4 schema:citation https://doi.org/10.1017/s0013091500028418
5 schema:datePublished 2003-06
6 schema:datePublishedReg 2003-06-01
7 schema:description We solve a bitangential interpolation problem for contractive multipliers on the Arveson space with an arbitrary interpolating set in the closed unit ball \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{B}^{d}\, of\, \mathbb{C}^{d} $\end{document}. The solvability criterion is established in terms of positive kernels. The set of all solutions is parametrized by a Redheffer transform.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4667319e3d5e40a0897e6af92966aee6
12 Nfffaa9c3972d4d62954cf3bc180bd58f
13 sg:journal.1136245
14 schema:name A Bitangential Interpolation Problem on the Closed Unit Ball for Multipliers of the Arveson Space
15 schema:pagination 125-164
16 schema:productId N02726dd6b3d049e6ba6ed0233f2c055b
17 N972081031d0c4072b93c5efdae8e5076
18 Nc012214f361143f69f6d53f3b3651d2a
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039754329
20 https://doi.org/10.1007/s000200300022
21 schema:sdDatePublished 2019-04-10T17:28
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ne7328d1aa8e54b7cb88b8d835fea5f1f
24 schema:url http://link.springer.com/10.1007/s000200300022
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N02726dd6b3d049e6ba6ed0233f2c055b schema:name doi
29 schema:value 10.1007/s000200300022
30 rdf:type schema:PropertyValue
31 N4667319e3d5e40a0897e6af92966aee6 schema:issueNumber 2
32 rdf:type schema:PublicationIssue
33 N7d6f602c1a984d9b8a120bcbd91b2d4a rdf:first sg:person.013713536413.78
34 rdf:rest Naf257ab02a0248619e830db189b169ed
35 N972081031d0c4072b93c5efdae8e5076 schema:name readcube_id
36 schema:value bd5f1f10ae1074b9d7fcd581ac98ef2cbffb4238df56aeed4e08ca9078c3d348
37 rdf:type schema:PropertyValue
38 Naf257ab02a0248619e830db189b169ed rdf:first sg:person.01130533744.43
39 rdf:rest rdf:nil
40 Nc012214f361143f69f6d53f3b3651d2a schema:name dimensions_id
41 schema:value pub.1039754329
42 rdf:type schema:PropertyValue
43 Ne7328d1aa8e54b7cb88b8d835fea5f1f schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nfffaa9c3972d4d62954cf3bc180bd58f schema:volumeNumber 46
46 rdf:type schema:PublicationVolume
47 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
48 schema:name Psychology and Cognitive Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
51 schema:name Psychology
52 rdf:type schema:DefinedTerm
53 sg:journal.1136245 schema:issn 0378-620X
54 1420-8989
55 schema:name Integral Equations and Operator Theory
56 rdf:type schema:Periodical
57 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
58 schema:familyName Bolotnikov
59 schema:givenName Vladimir
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
61 rdf:type schema:Person
62 sg:person.013713536413.78 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
63 schema:familyName Ball
64 schema:givenName Joseph A.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78
66 rdf:type schema:Person
67 https://doi.org/10.1017/s0013091500028418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015900152
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
70 schema:name Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795, USA. E-mail: vladi@math.wm.edu, US
71 rdf:type schema:Organization
72 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
73 schema:name Department of Mathematics, Virginia Polytechnic Institute, Blacksburg, VA 24061-0123, USA. E-mail: ball@calvin.math.vt.edu, US
74 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...