The Hoffman–Rossi Theorem for Operator Algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

David P. Blecher, Luis C. Flores, Beate G. Zimmer

ABSTRACT

N/A

References to SciGraph publications

Journal

TITLE

Integral Equations and Operator Theory

ISSUE

2

VOLUME

91

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-019-2521-7

DOI

http://dx.doi.org/10.1007/s00020-019-2521-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113283218


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "familyName": "Blecher", 
        "givenName": "David P.", 
        "type": "Person"
      }, 
      {
        "familyName": "Flores", 
        "givenName": "Luis C.", 
        "type": "Person"
      }, 
      {
        "familyName": "Zimmer", 
        "givenName": "Beate G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(72)90004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016205468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(91)90139-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037478173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01112096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049843391", 
          "https://doi.org/10.1007/bf01112096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01112096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049843391", 
          "https://doi.org/10.1007/bf01112096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/s0012-7094-67-03451-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064418027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm178-2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072184738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/tran/7275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085634772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-95-1-17-32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092031975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198526599.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098740209"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/s00020-019-2521-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "The Hoffman\u2013Rossi Theorem for Operator Algebras", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-019-2521-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113283218"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-019-2521-7", 
      "https://app.dimensions.ai/details/publication/pub.1113283218"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117125_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00020-019-2521-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2521-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2521-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2521-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2521-7'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      18 PREDICATES      30 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-019-2521-7 schema:author Ndfc8d086dbec448784bbc9188d856634
2 schema:citation sg:pub.10.1007/bf01112096
3 https://doi.org/10.1016/0022-1236(72)90004-3
4 https://doi.org/10.1016/0022-1236(91)90139-v
5 https://doi.org/10.1090/tran/7275
6 https://doi.org/10.1093/acprof:oso/9780198526599.001.0001
7 https://doi.org/10.1215/s0012-7094-67-03451-5
8 https://doi.org/10.4064/sm-95-1-17-32
9 https://doi.org/10.4064/sm178-2-4
10 schema:datePublished 2019-04
11 schema:datePublishedReg 2019-04-01
12 schema:genre non_research_article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3c120f16207a4a7c801ae273e1cb3fc8
16 N5c47d148718f4f34879cd165ffc45c3f
17 sg:journal.1136245
18 schema:name The Hoffman–Rossi Theorem for Operator Algebras
19 schema:productId N27252bc7c17043bbb58301c49dd89fe3
20 N80404fc761e04075a8393ad5c09c8d2f
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113283218
22 https://doi.org/10.1007/s00020-019-2521-7
23 schema:sdDatePublished 2019-04-11T14:21
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N308da047ac954fa1bea1647a5f08a322
26 schema:url http://link.springer.com/10.1007/s00020-019-2521-7
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N05803d18049a477b86c9d141faca25db schema:familyName Blecher
31 schema:givenName David P.
32 rdf:type schema:Person
33 N0cf01c105c064f3b9d8aa399f74af11a rdf:first Ndacf8cedfe434f438959302aa82a7b1b
34 rdf:rest rdf:nil
35 N22fc69ba231340fc89372dab838e06fe rdf:first Nccdfc7a21a3c4b3a90b54acd3d9b311a
36 rdf:rest N0cf01c105c064f3b9d8aa399f74af11a
37 N27252bc7c17043bbb58301c49dd89fe3 schema:name dimensions_id
38 schema:value pub.1113283218
39 rdf:type schema:PropertyValue
40 N308da047ac954fa1bea1647a5f08a322 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N3c120f16207a4a7c801ae273e1cb3fc8 schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 N5c47d148718f4f34879cd165ffc45c3f schema:volumeNumber 91
45 rdf:type schema:PublicationVolume
46 N80404fc761e04075a8393ad5c09c8d2f schema:name doi
47 schema:value 10.1007/s00020-019-2521-7
48 rdf:type schema:PropertyValue
49 Nccdfc7a21a3c4b3a90b54acd3d9b311a schema:familyName Flores
50 schema:givenName Luis C.
51 rdf:type schema:Person
52 Ndacf8cedfe434f438959302aa82a7b1b schema:familyName Zimmer
53 schema:givenName Beate G.
54 rdf:type schema:Person
55 Ndfc8d086dbec448784bbc9188d856634 rdf:first N05803d18049a477b86c9d141faca25db
56 rdf:rest N22fc69ba231340fc89372dab838e06fe
57 sg:journal.1136245 schema:issn 0378-620X
58 1420-8989
59 schema:name Integral Equations and Operator Theory
60 rdf:type schema:Periodical
61 sg:pub.10.1007/bf01112096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049843391
62 https://doi.org/10.1007/bf01112096
63 rdf:type schema:CreativeWork
64 https://doi.org/10.1016/0022-1236(72)90004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016205468
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1016/0022-1236(91)90139-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1037478173
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1090/tran/7275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085634772
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1093/acprof:oso/9780198526599.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098740209
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1215/s0012-7094-67-03451-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064418027
73 rdf:type schema:CreativeWork
74 https://doi.org/10.4064/sm-95-1-17-32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092031975
75 rdf:type schema:CreativeWork
76 https://doi.org/10.4064/sm178-2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072184738
77 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...