Ontology type: schema:ScholarlyArticle
2019-04
AUTHORSV. I. Mogilevskii
ABSTRACTLet A be a symmetric linear relation in the Hilbert space H with equal deficiency indices n±(A)≤∞. A self-adjoint linear relation A~⊃A in some Hilbert space H~⊃H is called an exit space extension of A; such an extension is called finite-codimensional if dim(H~⊖H)<∞. We study the compressions C(A~)=PHA~↾H of exit space extensions A~=A~∗. For a certain class of extensions A~ we parameterize the compressions C(A~) by means of abstract boundary conditions. This enables us to characterize various properties of C(A~) (in particular, self-adjointness) in terms of the parameter for A~ in the Krein formula for resolvents. We describe also the compressions of a certain class of finite-codimensional extensions. These results develop the results by A. Dijksma and H. Langer obtained for a densely defined symmetric operator A with finite and equal deficiency indices. More... »
PAGES9
http://scigraph.springernature.com/pub.10.1007/s00020-019-2507-5
DOIhttp://dx.doi.org/10.1007/s00020-019-2507-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112462849
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Department of Mathematical Analysis and Informatics, Poltava National V.G. Korolenko Pedagogical University, Ostrogradski Str. 2, 36000, Poltava, Ukraine"
],
"type": "Organization"
},
"familyName": "Mogilevskii",
"givenName": "V. I.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0022-1236(91)90024-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003147419"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-016-2313-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005012526",
"https://doi.org/10.1007/s00020-016-2313-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-016-2313-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005012526",
"https://doi.org/10.1007/s00020-016-2313-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2013.04.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007280761"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02367240",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007399668",
"https://doi.org/10.1007/bf02367240"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02367240",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007399668",
"https://doi.org/10.1007/bf02367240"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-011-1884-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012886223",
"https://doi.org/10.1007/s00020-011-1884-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061920809010026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020810486",
"https://doi.org/10.1134/s1061920809010026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061920809010026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020810486",
"https://doi.org/10.1134/s1061920809010026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01099564",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022114929",
"https://doi.org/10.1007/bf01099564"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01099564",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022114929",
"https://doi.org/10.1007/bf01099564"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-012-1991-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022276484",
"https://doi.org/10.1007/s00020-012-1991-7"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1037714883",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-3714-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037714883",
"https://doi.org/10.1007/978-94-011-3714-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-3714-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037714883",
"https://doi.org/10.1007/978-94-011-3714-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9904-1968-11957-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043843157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-06-04033-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044902024"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01061278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053146657",
"https://doi.org/10.1007/bf01061278"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01061278",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053146657",
"https://doi.org/10.1007/bf01061278"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.15352/afa/1399899845",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067741956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1974.54.71",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069066145"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1977.72.135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069067067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-62362-7_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092033156",
"https://doi.org/10.1007/978-3-319-62362-7_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-62362-7_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092033156",
"https://doi.org/10.1007/978-3-319-62362-7_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-018-2465-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104462397",
"https://doi.org/10.1007/s00020-018-2465-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-018-2465-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1104462397",
"https://doi.org/10.1007/s00020-018-2465-3"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "Let A be a symmetric linear relation in the Hilbert space H with equal deficiency indices n\u00b1(A)\u2264\u221e. A self-adjoint linear relation A~\u2283A in some Hilbert space H~\u2283H is called an exit space extension of A; such an extension is called finite-codimensional if dim(H~\u2296H)<\u221e. We study the compressions C(A~)=PHA~\u21beH of exit space extensions A~=A~\u2217. For a certain class of extensions A~ we parameterize the compressions C(A~) by means of abstract boundary conditions. This enables us to characterize various properties of C(A~) (in particular, self-adjointness) in terms of the parameter for A~ in the Krein formula for resolvents. We describe also the compressions of a certain class of finite-codimensional extensions. These results develop the results by A. Dijksma and H. Langer obtained for a densely defined symmetric operator A with finite and equal deficiency indices.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00020-019-2507-5",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136245",
"issn": [
"0378-620X",
"1420-8989"
],
"name": "Integral Equations and Operator Theory",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "91"
}
],
"name": "On Compressions of Self-Adjoint Extensions of a Symmetric Linear Relation",
"pagination": "9",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"a8fdcbb8a07fcc2fbcb10542ac462a9702480b9eaf20fa5f2f315541a44c4b52"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00020-019-2507-5"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112462849"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00020-019-2507-5",
"https://app.dimensions.ai/details/publication/pub.1112462849"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:28",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000005.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00020-019-2507-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2507-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2507-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2507-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-019-2507-5'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
21 PREDICATES
45 URIs
19 LITERALS
7 BLANK NODES