KMS and Ground States on Ultragraph C*-Algebras View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Gilles Gonçalves de Castro, Daniel Gonçalves

ABSTRACT

We describe KMS and ground states arising from a generalized gauge action on ultragraph C*-algebras. We focus on ultragraphs that satisfy Condition (RFUM), so that we can use the partial crossed product description of ultragraph C*-algebras recently described by the second author and Danilo Royer. In particular, for ultragraphs with no sinks, we generalize a recent result by Toke Carlsen and Nadia Larsen: Given a time evolution on the C*-algebra of an ultragraph, induced by a function on the edge set, we characterize the KMS states in five different ways and ground states in four different ways. In both cases we include a characterization given by maps on the set of generalized vertices of the ultragraph. We apply this last result to show the existence of KMS and ground states for an ultragraph C*-algebra that is neither an Exel–Laca nor a graph C*-algebra. More... »

PAGES

63

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-018-2490-2

DOI

http://dx.doi.org/10.1007/s00020-018-2490-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107080671


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Santa Catarina", 
          "id": "https://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Departamento de Matem\u00e1tica, Universidade Federal de Santa Catarina, 88040-900, Florian\u00f3polis, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Castro", 
        "givenName": "Gilles Gon\u00e7alves", 
        "id": "sg:person.013231466013.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231466013.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidade Federal de Santa Catarina", 
          "id": "https://www.grid.ac/institutes/grid.411237.2", 
          "name": [
            "Departamento de Matem\u00e1tica, Universidade Federal de Santa Catarina, 88040-900, Florian\u00f3polis, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves", 
        "givenName": "Daniel", 
        "id": "sg:person.016656455761.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656455761.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-0-387-74749-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003847298", 
          "https://doi.org/10.1007/978-0-387-74749-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-74749-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003847298", 
          "https://doi.org/10.1007/978-0-387-74749-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00233-008-9046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020755653", 
          "https://doi.org/10.1007/s00233-008-9046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00233-008-9046-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020755653", 
          "https://doi.org/10.1007/s00233-008-9046-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x14500669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020906372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1021504727", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03444-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021504727", 
          "https://doi.org/10.1007/978-3-662-03444-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03444-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021504727", 
          "https://doi.org/10.1007/978-3-662-03444-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-06-08214-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027034020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2013.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027864467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2206/kyushujm.67.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035161889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-002-0713-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035491641", 
          "https://doi.org/10.1007/s00220-002-0713-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bulsci.2016.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041926416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2010.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2016.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043612874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129167x1650083x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062903205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmj-2016-46-1-85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064429452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2003.52.2209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067513346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imrn/rnx175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090638640"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We describe KMS and ground states arising from a generalized gauge action on ultragraph C*-algebras. We focus on ultragraphs that satisfy Condition (RFUM), so that we can use the partial crossed product description of ultragraph C*-algebras recently described by the second author and Danilo Royer. In particular, for ultragraphs with no sinks, we generalize a recent result by Toke Carlsen and Nadia Larsen: Given a time evolution on the C*-algebra of an ultragraph, induced by a function on the edge set, we characterize the KMS states in five different ways and ground states in four different ways. In both cases we include a characterization given by maps on the set of generalized vertices of the ultragraph. We apply this last result to show the existence of KMS and ground states for an ultragraph C*-algebra that is neither an Exel\u2013Laca nor a graph C*-algebra.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-018-2490-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "KMS and Ground States on Ultragraph C*-Algebras", 
    "pagination": "63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b5951ee0009b6d96bba787e9cf29ba361a2c6f1696d0fb88bdbc886d9579866"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-018-2490-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107080671"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-018-2490-2", 
      "https://app.dimensions.ai/details/publication/pub.1107080671"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00020-018-2490-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2490-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2490-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2490-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2490-2'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-018-2490-2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5b14cd5720c5439b9030bccf116ed739
4 schema:citation sg:pub.10.1007/978-0-387-74749-1
5 sg:pub.10.1007/978-3-662-03444-6
6 sg:pub.10.1007/s00220-002-0713-4
7 sg:pub.10.1007/s00233-008-9046-8
8 https://app.dimensions.ai/details/publication/pub.1021504727
9 https://doi.org/10.1016/j.bulsci.2016.10.002
10 https://doi.org/10.1016/j.jfa.2013.09.016
11 https://doi.org/10.1016/j.jfa.2016.07.001
12 https://doi.org/10.1090/s0002-9939-06-08214-1
13 https://doi.org/10.1093/imrn/rnx175
14 https://doi.org/10.1142/s0129167x14500669
15 https://doi.org/10.1142/s0129167x1650083x
16 https://doi.org/10.1216/rmj-2016-46-1-85
17 https://doi.org/10.1512/iumj.2003.52.2209
18 https://doi.org/10.1515/crelle.2010.023
19 https://doi.org/10.2206/kyushujm.67.83
20 schema:datePublished 2018-12
21 schema:datePublishedReg 2018-12-01
22 schema:description We describe KMS and ground states arising from a generalized gauge action on ultragraph C*-algebras. We focus on ultragraphs that satisfy Condition (RFUM), so that we can use the partial crossed product description of ultragraph C*-algebras recently described by the second author and Danilo Royer. In particular, for ultragraphs with no sinks, we generalize a recent result by Toke Carlsen and Nadia Larsen: Given a time evolution on the C*-algebra of an ultragraph, induced by a function on the edge set, we characterize the KMS states in five different ways and ground states in four different ways. In both cases we include a characterization given by maps on the set of generalized vertices of the ultragraph. We apply this last result to show the existence of KMS and ground states for an ultragraph C*-algebra that is neither an Exel–Laca nor a graph C*-algebra.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N8b8ee47e291b487d8347865ee28441d3
27 Nf313d8578f804114b2de9c8ce3e4b9c6
28 sg:journal.1136245
29 schema:name KMS and Ground States on Ultragraph C*-Algebras
30 schema:pagination 63
31 schema:productId N408a43b5e74a440e8717892d0fef6a19
32 N5d6c8d9ec4f9463dad86804e55a9d81b
33 N6efc2ef9270f4c79b54ccc888743cabd
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107080671
35 https://doi.org/10.1007/s00020-018-2490-2
36 schema:sdDatePublished 2019-04-10T22:37
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N343970015f2f4bdca166a0a971edb56f
39 schema:url http://link.springer.com/10.1007%2Fs00020-018-2490-2
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N343970015f2f4bdca166a0a971edb56f schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N408a43b5e74a440e8717892d0fef6a19 schema:name dimensions_id
46 schema:value pub.1107080671
47 rdf:type schema:PropertyValue
48 N5b14cd5720c5439b9030bccf116ed739 rdf:first sg:person.013231466013.48
49 rdf:rest N6db0e3911eda491d859e77e6b29752d4
50 N5d6c8d9ec4f9463dad86804e55a9d81b schema:name readcube_id
51 schema:value 1b5951ee0009b6d96bba787e9cf29ba361a2c6f1696d0fb88bdbc886d9579866
52 rdf:type schema:PropertyValue
53 N6db0e3911eda491d859e77e6b29752d4 rdf:first sg:person.016656455761.22
54 rdf:rest rdf:nil
55 N6efc2ef9270f4c79b54ccc888743cabd schema:name doi
56 schema:value 10.1007/s00020-018-2490-2
57 rdf:type schema:PropertyValue
58 N8b8ee47e291b487d8347865ee28441d3 schema:volumeNumber 90
59 rdf:type schema:PublicationVolume
60 Nf313d8578f804114b2de9c8ce3e4b9c6 schema:issueNumber 6
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1136245 schema:issn 0378-620X
69 1420-8989
70 schema:name Integral Equations and Operator Theory
71 rdf:type schema:Periodical
72 sg:person.013231466013.48 schema:affiliation https://www.grid.ac/institutes/grid.411237.2
73 schema:familyName de Castro
74 schema:givenName Gilles Gonçalves
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013231466013.48
76 rdf:type schema:Person
77 sg:person.016656455761.22 schema:affiliation https://www.grid.ac/institutes/grid.411237.2
78 schema:familyName Gonçalves
79 schema:givenName Daniel
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016656455761.22
81 rdf:type schema:Person
82 sg:pub.10.1007/978-0-387-74749-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003847298
83 https://doi.org/10.1007/978-0-387-74749-1
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-662-03444-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021504727
86 https://doi.org/10.1007/978-3-662-03444-6
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s00220-002-0713-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035491641
89 https://doi.org/10.1007/s00220-002-0713-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00233-008-9046-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020755653
92 https://doi.org/10.1007/s00233-008-9046-8
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1021504727 schema:CreativeWork
95 https://doi.org/10.1016/j.bulsci.2016.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041926416
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jfa.2013.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027864467
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jfa.2016.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043612874
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0002-9939-06-08214-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027034020
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1093/imrn/rnx175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090638640
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/s0129167x14500669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020906372
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1142/s0129167x1650083x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062903205
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1216/rmj-2016-46-1-85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064429452
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1512/iumj.2003.52.2209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067513346
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1515/crelle.2010.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041955928
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2206/kyushujm.67.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035161889
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.411237.2 schema:alternateName Universidade Federal de Santa Catarina
118 schema:name Departamento de Matemática, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Brazil
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...