Ontology type: schema:ScholarlyArticle
2018-12
AUTHORSThomas Tzvi Scheckter, Fedor Sukochev
ABSTRACTLet R be the separable hyperfinite factor of type II1. We show that for any bounded Vilenkin group, the sequence of partial sums of the corresponding noncommutative Vilenkin–Fourier series is a uniformly bounded family of weak type (1, 1) operators.
PAGES64
http://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8
DOIhttp://dx.doi.org/10.1007/s00020-018-2489-8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1107198860
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"author": [
{
"affiliation": {
"alternateName": "UNSW Australia",
"id": "https://www.grid.ac/institutes/grid.1005.4",
"name": [
"School of Mathematics and Statistics, University of New South Wales, 2052, Kensington, NSW, Australia"
],
"type": "Organization"
},
"familyName": "Scheckter",
"givenName": "Thomas Tzvi",
"type": "Person"
},
{
"affiliation": {
"alternateName": "UNSW Australia",
"id": "https://www.grid.ac/institutes/grid.1005.4",
"name": [
"School of Mathematics and Statistics, University of New South Wales, 2052, Kensington, NSW, Australia"
],
"type": "Organization"
},
"familyName": "Sukochev",
"givenName": "Fedor",
"id": "sg:person.014260047565.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260047565.96"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1112/s0024611505015297",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000993441"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002200050224",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002674716",
"https://doi.org/10.1007/s002200050224"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1874-5849(03)80041-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003950740"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01215160",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005524926",
"https://doi.org/10.1007/bf01215160"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1014335819",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-3288-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014335819",
"https://doi.org/10.1007/978-94-011-3288-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-011-3288-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014335819",
"https://doi.org/10.1007/978-94-011-3288-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0024611506015863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019458908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0024611506015863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019458908"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0047-259x(71)90027-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022605455"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-10453-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025674483",
"https://doi.org/10.1007/978-3-662-10453-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-10453-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025674483",
"https://doi.org/10.1007/978-3-662-10453-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02384340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027361400",
"https://doi.org/10.1007/bf02384340"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02384340",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027361400",
"https://doi.org/10.1007/bf02384340"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01198137",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034092956",
"https://doi.org/10.1007/bf01198137"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jfan.2002.3952",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038987875"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2012.07.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040464292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/s0024609304003947",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050581623"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2008.04.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051289380"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1986.123.269",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069069091"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2748/tmj/1178244661",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1070922128"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.7146/math.scand.a-14300",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073614538"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1112/jlms.12121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101844069"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-12",
"datePublishedReg": "2018-12-01",
"description": "Let R be the separable hyperfinite factor of type II1. We show that for any bounded Vilenkin group, the sequence of partial sums of the corresponding noncommutative Vilenkin\u2013Fourier series is a uniformly bounded family of weak type (1, 1) operators.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00020-018-2489-8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136245",
"issn": [
"0378-620X",
"1420-8989"
],
"name": "Integral Equations and Operator Theory",
"type": "Periodical"
},
{
"issueNumber": "6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "90"
}
],
"name": "Weak Type Estimates for the Noncommutative Vilenkin\u2013Fourier Series",
"pagination": "64",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"583865e43ec2a7d937390320709e14f75214cb6f4c52f8ea2707480230541900"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00020-018-2489-8"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1107198860"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00020-018-2489-8",
"https://app.dimensions.ai/details/publication/pub.1107198860"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T20:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000539.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00020-018-2489-8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
20 PREDICATES
44 URIs
19 LITERALS
7 BLANK NODES