Weak Type Estimates for the Noncommutative Vilenkin–Fourier Series View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Thomas Tzvi Scheckter, Fedor Sukochev

ABSTRACT

Let R be the separable hyperfinite factor of type II1. We show that for any bounded Vilenkin group, the sequence of partial sums of the corresponding noncommutative Vilenkin–Fourier series is a uniformly bounded family of weak type (1, 1) operators.

PAGES

64

References to SciGraph publications

  • 1991-12. Non commutative Khintchine and Paley inequalities in ARKIV FÖR MATEMATIK
  • 2003. Theory of Operator Algebras III in NONE
  • 1997-11. Non-Commutative Martingale Inequalities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001-12. Vilenkin systems and generalized triangular truncation operator in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 1991. Walsh Series and Transforms, Theory and Applications in NONE
  • 1989-12. Non-commutative Banach function spaces in MATHEMATISCHE ZEITSCHRIFT
  • Journal

    TITLE

    Integral Equations and Operator Theory

    ISSUE

    6

    VOLUME

    90

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8

    DOI

    http://dx.doi.org/10.1007/s00020-018-2489-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107198860


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Mathematics and Statistics, University of New South Wales, 2052, Kensington, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scheckter", 
            "givenName": "Thomas Tzvi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "UNSW Australia", 
              "id": "https://www.grid.ac/institutes/grid.1005.4", 
              "name": [
                "School of Mathematics and Statistics, University of New South Wales, 2052, Kensington, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sukochev", 
            "givenName": "Fedor", 
            "id": "sg:person.014260047565.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260047565.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1112/s0024611505015297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000993441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002200050224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002674716", 
              "https://doi.org/10.1007/s002200050224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1874-5849(03)80041-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003950740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01215160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005524926", 
              "https://doi.org/10.1007/bf01215160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1014335819", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-3288-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014335819", 
              "https://doi.org/10.1007/978-94-011-3288-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-3288-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014335819", 
              "https://doi.org/10.1007/978-94-011-3288-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0024611506015863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019458908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0024611506015863", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019458908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0047-259x(71)90027-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022605455"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-10453-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025674483", 
              "https://doi.org/10.1007/978-3-662-10453-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-10453-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025674483", 
              "https://doi.org/10.1007/978-3-662-10453-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02384340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027361400", 
              "https://doi.org/10.1007/bf02384340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02384340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027361400", 
              "https://doi.org/10.1007/bf02384340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01198137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034092956", 
              "https://doi.org/10.1007/bf01198137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfan.2002.3952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038987875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2012.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040464292"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/s0024609304003947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050581623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2008.04.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051289380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2140/pjm.1986.123.269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069069091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2748/tmj/1178244661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070922128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7146/math.scand.a-14300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073614538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1112/jlms.12121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101844069"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Let R be the separable hyperfinite factor of type II1. We show that for any bounded Vilenkin group, the sequence of partial sums of the corresponding noncommutative Vilenkin\u2013Fourier series is a uniformly bounded family of weak type (1, 1) operators.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00020-018-2489-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136245", 
            "issn": [
              "0378-620X", 
              "1420-8989"
            ], 
            "name": "Integral Equations and Operator Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "name": "Weak Type Estimates for the Noncommutative Vilenkin\u2013Fourier Series", 
        "pagination": "64", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "583865e43ec2a7d937390320709e14f75214cb6f4c52f8ea2707480230541900"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00020-018-2489-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107198860"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00020-018-2489-8", 
          "https://app.dimensions.ai/details/publication/pub.1107198860"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000539.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00020-018-2489-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2489-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      20 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00020-018-2489-8 schema:author Ncdb779afbb524dc499e871d9fe48a22c
    2 schema:citation sg:pub.10.1007/978-3-662-10453-8
    3 sg:pub.10.1007/978-94-011-3288-6
    4 sg:pub.10.1007/bf01198137
    5 sg:pub.10.1007/bf01215160
    6 sg:pub.10.1007/bf02384340
    7 sg:pub.10.1007/s002200050224
    8 https://app.dimensions.ai/details/publication/pub.1014335819
    9 https://doi.org/10.1006/jfan.2002.3952
    10 https://doi.org/10.1016/0047-259x(71)90027-3
    11 https://doi.org/10.1016/j.jfa.2008.04.007
    12 https://doi.org/10.1016/j.jfa.2012.07.012
    13 https://doi.org/10.1016/s1874-5849(03)80041-4
    14 https://doi.org/10.1017/s0024611506015863
    15 https://doi.org/10.1112/jlms.12121
    16 https://doi.org/10.1112/s0024609304003947
    17 https://doi.org/10.1112/s0024611505015297
    18 https://doi.org/10.2140/pjm.1986.123.269
    19 https://doi.org/10.2748/tmj/1178244661
    20 https://doi.org/10.7146/math.scand.a-14300
    21 schema:datePublished 2018-12
    22 schema:datePublishedReg 2018-12-01
    23 schema:description Let R be the separable hyperfinite factor of type II1. We show that for any bounded Vilenkin group, the sequence of partial sums of the corresponding noncommutative Vilenkin–Fourier series is a uniformly bounded family of weak type (1, 1) operators.
    24 schema:genre research_article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N04e35d6800674eab8eaf924f968f884c
    28 N2aaad091e9c04c32b9621ef99aa79275
    29 sg:journal.1136245
    30 schema:name Weak Type Estimates for the Noncommutative Vilenkin–Fourier Series
    31 schema:pagination 64
    32 schema:productId Na2b2da80f51f4adfa8b17fe916ce32c8
    33 Nb9be6d664b9446fba99c1552a9cff532
    34 Ne68c914fa2f64c4ea6e762ec63ffe0fb
    35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107198860
    36 https://doi.org/10.1007/s00020-018-2489-8
    37 schema:sdDatePublished 2019-04-10T20:52
    38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    39 schema:sdPublisher N6c71aa5424dc49bcaad9451fddbe4ed0
    40 schema:url http://link.springer.com/10.1007%2Fs00020-018-2489-8
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset articles
    43 rdf:type schema:ScholarlyArticle
    44 N04e35d6800674eab8eaf924f968f884c schema:issueNumber 6
    45 rdf:type schema:PublicationIssue
    46 N2aaad091e9c04c32b9621ef99aa79275 schema:volumeNumber 90
    47 rdf:type schema:PublicationVolume
    48 N6c71aa5424dc49bcaad9451fddbe4ed0 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 N6cb4515707bc43b18b5b3c7dea7778a2 rdf:first sg:person.014260047565.96
    51 rdf:rest rdf:nil
    52 Na2b2da80f51f4adfa8b17fe916ce32c8 schema:name dimensions_id
    53 schema:value pub.1107198860
    54 rdf:type schema:PropertyValue
    55 Nb9be6d664b9446fba99c1552a9cff532 schema:name readcube_id
    56 schema:value 583865e43ec2a7d937390320709e14f75214cb6f4c52f8ea2707480230541900
    57 rdf:type schema:PropertyValue
    58 Ncdb779afbb524dc499e871d9fe48a22c rdf:first Nf49669e96278473688271d86d6e0b64b
    59 rdf:rest N6cb4515707bc43b18b5b3c7dea7778a2
    60 Ne68c914fa2f64c4ea6e762ec63ffe0fb schema:name doi
    61 schema:value 10.1007/s00020-018-2489-8
    62 rdf:type schema:PropertyValue
    63 Nf49669e96278473688271d86d6e0b64b schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    64 schema:familyName Scheckter
    65 schema:givenName Thomas Tzvi
    66 rdf:type schema:Person
    67 sg:journal.1136245 schema:issn 0378-620X
    68 1420-8989
    69 schema:name Integral Equations and Operator Theory
    70 rdf:type schema:Periodical
    71 sg:person.014260047565.96 schema:affiliation https://www.grid.ac/institutes/grid.1005.4
    72 schema:familyName Sukochev
    73 schema:givenName Fedor
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014260047565.96
    75 rdf:type schema:Person
    76 sg:pub.10.1007/978-3-662-10453-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025674483
    77 https://doi.org/10.1007/978-3-662-10453-8
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1007/978-94-011-3288-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014335819
    80 https://doi.org/10.1007/978-94-011-3288-6
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01198137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034092956
    83 https://doi.org/10.1007/bf01198137
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf01215160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005524926
    86 https://doi.org/10.1007/bf01215160
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf02384340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027361400
    89 https://doi.org/10.1007/bf02384340
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s002200050224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002674716
    92 https://doi.org/10.1007/s002200050224
    93 rdf:type schema:CreativeWork
    94 https://app.dimensions.ai/details/publication/pub.1014335819 schema:CreativeWork
    95 https://doi.org/10.1006/jfan.2002.3952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038987875
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0047-259x(71)90027-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605455
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.jfa.2008.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051289380
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.jfa.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040464292
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/s1874-5849(03)80041-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003950740
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1017/s0024611506015863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019458908
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1112/jlms.12121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101844069
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1112/s0024609304003947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050581623
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1112/s0024611505015297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000993441
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.2140/pjm.1986.123.269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069091
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.2748/tmj/1178244661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070922128
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.7146/math.scand.a-14300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073614538
    118 rdf:type schema:CreativeWork
    119 https://www.grid.ac/institutes/grid.1005.4 schema:alternateName UNSW Australia
    120 schema:name School of Mathematics and Statistics, University of New South Wales, 2052, Kensington, NSW, Australia
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...