Ideal Membership in H∞: Toeplitz Corona Approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Michael Hartz, Brett D. Wick

ABSTRACT

We study the ideal membership problem in H∞ on the unit disc. Thus, given functions f,f1,…,fn in H∞, we seek sufficient conditions on the size of f in order for f to belong to the ideal of H∞ generated by f1,…,fn. We provide a different proof of a theorem of Treil, which gives the sharpest known sufficient condition. To this end, we solve a closely related problem in the Hilbert space H2, which is equivalent to the ideal membership problem by the Nevanlinna–Pick property of H2. More... »

PAGES

66

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-018-2488-9

DOI

http://dx.doi.org/10.1007/s00020-018-2488-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107207323


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Mathematics, Washington University in St. Louis, One Brookings Drive, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartz", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Department of Mathematics, Washington University in St. Louis, One Brookings Drive, 63130, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wick", 
        "givenName": "Brett D.", 
        "id": "sg:person.01210035604.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210035604.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02762872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005952287", 
          "https://doi.org/10.1007/bf02762872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02868486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007360862", 
          "https://doi.org/10.1007/bf02868486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02868486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007360862", 
          "https://doi.org/10.1007/bf02868486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2005.04.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012318292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-004-1325-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022371640", 
          "https://doi.org/10.1007/s00020-004-1325-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-04-07516-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024417591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-013-2107-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026661890", 
          "https://doi.org/10.1007/s00020-013-2107-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02570734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034488730", 
          "https://doi.org/10.1007/bf02570734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02570734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034488730", 
          "https://doi.org/10.1007/bf02570734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02798049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035429662", 
          "https://doi.org/10.1007/bf02798049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02798049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035429662", 
          "https://doi.org/10.1007/bf02798049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2007.07.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040958347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-013-2108-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047252062", 
          "https://doi.org/10.1007/s00020-013-2108-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/apde.2011.4.499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069059377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We study the ideal membership problem in H\u221e on the unit disc. Thus, given functions f,f1,\u2026,fn in H\u221e, we seek sufficient conditions on the size of f in order for f to belong to the ideal of H\u221e generated by f1,\u2026,fn. We provide a different proof of a theorem of Treil, which gives the sharpest known sufficient condition. To this end, we solve a closely related problem in the Hilbert space H2, which is equivalent to the ideal membership problem by the Nevanlinna\u2013Pick property of H2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-018-2488-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Ideal Membership in H\u221e: Toeplitz Corona Approach", 
    "pagination": "66", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "27e84dab4f55dfcde849b56f49c371d779d7d5ab49a295aae47e3192d4f096d1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-018-2488-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107207323"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-018-2488-9", 
      "https://app.dimensions.ai/details/publication/pub.1107207323"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00020-018-2488-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2488-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2488-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2488-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2488-9'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-018-2488-9 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N6d2916439b4d42f7bc8ef4ba23250329
4 schema:citation sg:pub.10.1007/bf02570734
5 sg:pub.10.1007/bf02762872
6 sg:pub.10.1007/bf02798049
7 sg:pub.10.1007/bf02868486
8 sg:pub.10.1007/s00020-004-1325-5
9 sg:pub.10.1007/s00020-013-2107-8
10 sg:pub.10.1007/s00020-013-2108-7
11 https://doi.org/10.1016/j.jfa.2005.04.010
12 https://doi.org/10.1016/j.jfa.2007.07.018
13 https://doi.org/10.1090/s0002-9939-04-07516-1
14 https://doi.org/10.2140/apde.2011.4.499
15 https://doi.org/10.2307/1970375
16 schema:datePublished 2018-12
17 schema:datePublishedReg 2018-12-01
18 schema:description We study the ideal membership problem in H∞ on the unit disc. Thus, given functions f,f1,…,fn in H∞, we seek sufficient conditions on the size of f in order for f to belong to the ideal of H∞ generated by f1,…,fn. We provide a different proof of a theorem of Treil, which gives the sharpest known sufficient condition. To this end, we solve a closely related problem in the Hilbert space H2, which is equivalent to the ideal membership problem by the Nevanlinna–Pick property of H2.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N27252a9f71fa4df28123793c33329567
23 N28f88c3f3f90425188edd3c9ffb279a9
24 sg:journal.1136245
25 schema:name Ideal Membership in H∞: Toeplitz Corona Approach
26 schema:pagination 66
27 schema:productId N3848e52ed95a4ed4955223d757b57301
28 Ne531d6e41bd4408abfd5f8f07bef86b2
29 Need7bea5d6ff4a0c91db88efeb3ac5b8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107207323
31 https://doi.org/10.1007/s00020-018-2488-9
32 schema:sdDatePublished 2019-04-10T23:30
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N1162b375807b4d39b18d9b700895229d
35 schema:url http://link.springer.com/10.1007%2Fs00020-018-2488-9
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1162b375807b4d39b18d9b700895229d schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N27252a9f71fa4df28123793c33329567 schema:volumeNumber 90
42 rdf:type schema:PublicationVolume
43 N28f88c3f3f90425188edd3c9ffb279a9 schema:issueNumber 6
44 rdf:type schema:PublicationIssue
45 N3848e52ed95a4ed4955223d757b57301 schema:name dimensions_id
46 schema:value pub.1107207323
47 rdf:type schema:PropertyValue
48 N4c76b3cd825e401f836ad82c61244335 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
49 schema:familyName Hartz
50 schema:givenName Michael
51 rdf:type schema:Person
52 N6d2916439b4d42f7bc8ef4ba23250329 rdf:first N4c76b3cd825e401f836ad82c61244335
53 rdf:rest N70b7b30a856d42799bf572fd59daf182
54 N70b7b30a856d42799bf572fd59daf182 rdf:first sg:person.01210035604.89
55 rdf:rest rdf:nil
56 Ne531d6e41bd4408abfd5f8f07bef86b2 schema:name readcube_id
57 schema:value 27e84dab4f55dfcde849b56f49c371d779d7d5ab49a295aae47e3192d4f096d1
58 rdf:type schema:PropertyValue
59 Need7bea5d6ff4a0c91db88efeb3ac5b8 schema:name doi
60 schema:value 10.1007/s00020-018-2488-9
61 rdf:type schema:PropertyValue
62 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
63 schema:name Earth Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
66 schema:name Geology
67 rdf:type schema:DefinedTerm
68 sg:journal.1136245 schema:issn 0378-620X
69 1420-8989
70 schema:name Integral Equations and Operator Theory
71 rdf:type schema:Periodical
72 sg:person.01210035604.89 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
73 schema:familyName Wick
74 schema:givenName Brett D.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210035604.89
76 rdf:type schema:Person
77 sg:pub.10.1007/bf02570734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034488730
78 https://doi.org/10.1007/bf02570734
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02762872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005952287
81 https://doi.org/10.1007/bf02762872
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf02798049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035429662
84 https://doi.org/10.1007/bf02798049
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf02868486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007360862
87 https://doi.org/10.1007/bf02868486
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/s00020-004-1325-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022371640
90 https://doi.org/10.1007/s00020-004-1325-5
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00020-013-2107-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026661890
93 https://doi.org/10.1007/s00020-013-2107-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/s00020-013-2108-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047252062
96 https://doi.org/10.1007/s00020-013-2108-7
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.jfa.2005.04.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012318292
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jfa.2007.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040958347
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1090/s0002-9939-04-07516-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024417591
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2140/apde.2011.4.499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069059377
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/1970375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675704
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
109 schema:name Department of Mathematics, Washington University in St. Louis, One Brookings Drive, 63130, St. Louis, MO, USA
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...