Maps Preserving Schatten Norms of Power Means of Positive Operators View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Gergő Nagy

ABSTRACT

In this paper, we determine the general form of transformations on positive operators preserving a p-norm of a power mean with positive exponent. The corresponding theorems complement a former result of ours, in which we did the same concerning the operator norm and the cone of invertible positive operators on a finite dimensional complex Hilbert space. More... »

PAGES

59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-018-2487-x

DOI

http://dx.doi.org/10.1007/s00020-018-2487-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106656334


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Debrecen", 
          "id": "https://www.grid.ac/institutes/grid.7122.6", 
          "name": [
            "Institute of Mathematics, University of Debrecen, P.O. Box 400, 4002, Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagy", 
        "givenName": "Gerg\u0151", 
        "id": "sg:person.0736360507.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736360507.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.laa.2015.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002633222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-015-2241-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006222790", 
          "https://doi.org/10.1007/s00020-015-2241-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2014.05.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014579537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/520795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019462401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1020728750", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020728750", 
          "https://doi.org/10.1007/978-3-319-04150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-04150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020728750", 
          "https://doi.org/10.1007/978-3-319-04150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/434121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035231117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02771613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036513249", 
          "https://doi.org/10.1007/bf02771613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2010.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051181919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/529/10428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089199354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-018-2426-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267118", 
          "https://doi.org/10.1007/s00020-018-2426-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-018-2426-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267118", 
          "https://doi.org/10.1007/s00020-018-2426-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-018-2426-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101267118", 
          "https://doi.org/10.1007/s00020-018-2426-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2018-011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101717518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2018-011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101717518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2018-011-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101717518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14232/actasm-018-016-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105368764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10476-018-0401-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106195759", 
          "https://doi.org/10.1007/s10476-018-0401-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "In this paper, we determine the general form of transformations on positive operators preserving a p-norm of a power mean with positive exponent. The corresponding theorems complement a former result of ours, in which we did the same concerning the operator norm and the cone of invertible positive operators on a finite dimensional complex Hilbert space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-018-2487-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Maps Preserving Schatten Norms of Power Means of Positive Operators", 
    "pagination": "59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c909301eabedb60f340687410263772f0f91b806e9dc8ae1263edec8c1fb9c0a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-018-2487-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106656334"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-018-2487-x", 
      "https://app.dimensions.ai/details/publication/pub.1106656334"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00020-018-2487-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2487-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2487-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2487-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2487-x'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-018-2487-x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7b0650d7457245d1b2fc16a626584870
4 schema:citation sg:pub.10.1007/978-3-319-04150-6
5 sg:pub.10.1007/bf02771613
6 sg:pub.10.1007/s00020-015-2241-6
7 sg:pub.10.1007/s00020-018-2426-x
8 sg:pub.10.1007/s10476-018-0401-z
9 https://app.dimensions.ai/details/publication/pub.1020728750
10 https://doi.org/10.1016/j.laa.2010.12.007
11 https://doi.org/10.1016/j.laa.2015.06.009
12 https://doi.org/10.1016/j.physleta.2014.05.039
13 https://doi.org/10.1090/conm/529/10428
14 https://doi.org/10.1155/2014/434121
15 https://doi.org/10.1155/2014/520795
16 https://doi.org/10.14232/actasm-018-016-z
17 https://doi.org/10.4153/cmb-2018-011-3
18 schema:datePublished 2018-10
19 schema:datePublishedReg 2018-10-01
20 schema:description In this paper, we determine the general form of transformations on positive operators preserving a p-norm of a power mean with positive exponent. The corresponding theorems complement a former result of ours, in which we did the same concerning the operator norm and the cone of invertible positive operators on a finite dimensional complex Hilbert space.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Na3001a5f5fbe4335b17a9b5585391a42
25 Nbed49ca614304bf283b4def96a42625a
26 sg:journal.1136245
27 schema:name Maps Preserving Schatten Norms of Power Means of Positive Operators
28 schema:pagination 59
29 schema:productId N0a38202f406c4474b101d818a9c662d2
30 N1de0a28a6b6f4615b3c133fc5ab368c0
31 Ne53c1065ca754a0dbae7c5c1ab1df00a
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106656334
33 https://doi.org/10.1007/s00020-018-2487-x
34 schema:sdDatePublished 2019-04-10T21:41
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N13c89c5430ca43e9af8b35d3ef76fdb3
37 schema:url http://link.springer.com/10.1007%2Fs00020-018-2487-x
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0a38202f406c4474b101d818a9c662d2 schema:name doi
42 schema:value 10.1007/s00020-018-2487-x
43 rdf:type schema:PropertyValue
44 N13c89c5430ca43e9af8b35d3ef76fdb3 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N1de0a28a6b6f4615b3c133fc5ab368c0 schema:name readcube_id
47 schema:value c909301eabedb60f340687410263772f0f91b806e9dc8ae1263edec8c1fb9c0a
48 rdf:type schema:PropertyValue
49 N7b0650d7457245d1b2fc16a626584870 rdf:first sg:person.0736360507.15
50 rdf:rest rdf:nil
51 Na3001a5f5fbe4335b17a9b5585391a42 schema:issueNumber 5
52 rdf:type schema:PublicationIssue
53 Nbed49ca614304bf283b4def96a42625a schema:volumeNumber 90
54 rdf:type schema:PublicationVolume
55 Ne53c1065ca754a0dbae7c5c1ab1df00a schema:name dimensions_id
56 schema:value pub.1106656334
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136245 schema:issn 0378-620X
65 1420-8989
66 schema:name Integral Equations and Operator Theory
67 rdf:type schema:Periodical
68 sg:person.0736360507.15 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
69 schema:familyName Nagy
70 schema:givenName Gergő
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736360507.15
72 rdf:type schema:Person
73 sg:pub.10.1007/978-3-319-04150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020728750
74 https://doi.org/10.1007/978-3-319-04150-6
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02771613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036513249
77 https://doi.org/10.1007/bf02771613
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s00020-015-2241-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006222790
80 https://doi.org/10.1007/s00020-015-2241-6
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s00020-018-2426-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101267118
83 https://doi.org/10.1007/s00020-018-2426-x
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s10476-018-0401-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1106195759
86 https://doi.org/10.1007/s10476-018-0401-z
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1020728750 schema:CreativeWork
89 https://doi.org/10.1016/j.laa.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051181919
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.laa.2015.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002633222
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.physleta.2014.05.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014579537
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1090/conm/529/10428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089199354
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1155/2014/434121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035231117
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1155/2014/520795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019462401
100 rdf:type schema:CreativeWork
101 https://doi.org/10.14232/actasm-018-016-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105368764
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4153/cmb-2018-011-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101717518
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
106 schema:name Institute of Mathematics, University of Debrecen, P.O. Box 400, 4002, Debrecen, Hungary
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...