Schrödinger Operators with Singular Rank-Two Perturbations and Point Interactions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Yuriy Golovaty

ABSTRACT

Norm resolvent approximation for a wide class of point interactions in one dimension is constructed. To analyse the limit behaviour of Schrödinger operators with localized singular rank-two perturbations coupled with δ-like potentials as the support of perturbation shrinks to a point, we show that the set of limit operators is quite rich. Depending on parameters of the perturbation, the limit operators are described by both the connected and separated boundary conditions. In particular an approximation for a four-parametric subfamily of all the connected point interactions is built. We give examples of the singular perturbed Schrödinger operators without localized gauge fields, which converge to point interactions with the non-trivial phase parameter. We also construct an approximation for the point interactions that are described by different types of the separated boundary conditions such as the Robin–Dirichlet, the Neumann–Neumann or the Robin–Robin types. More... »

PAGES

57

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-018-2482-2

DOI

http://dx.doi.org/10.1007/s00020-018-2482-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105740894


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lviv University", 
          "id": "https://www.grid.ac/institutes/grid.77054.31", 
          "name": [
            "Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universytetska Str., 79000, Lviv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Golovaty", 
        "givenName": "Yuriy", 
        "id": "sg:person.016005241735.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005241735.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11005-014-0706-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007609831", 
          "https://doi.org/10.1007/s11005-014-0706-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/46/38/385305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008028536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-010-0641-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009862562", 
          "https://doi.org/10.1007/s10773-010-0641-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2008.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010089835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/37/29/l01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013219212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002200100567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797885", 
          "https://doi.org/10.1007/s002200100567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/44/37/375305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015564346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4936302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018390580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-012-2027-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024558671", 
          "https://doi.org/10.1007/s00020-012-2027-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4877(86)90045-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031787176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-02-06694-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031918745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02487279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033092641", 
          "https://doi.org/10.1007/bf02487279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02487279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033092641", 
          "https://doi.org/10.1007/bf02487279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033235695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/10/105302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034820775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/10/105302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034820775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1022932229094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035418274", 
          "https://doi.org/10.1023/a:1022932229094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.10.070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036526921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/15/155204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038420910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/15/155204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038420910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01067286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047970234", 
          "https://doi.org/10.1007/bf01067286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01067286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047970234", 
          "https://doi.org/10.1007/bf01067286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/asl.2008.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048489574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/49/2/025302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048917574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(98)00188-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052276094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210512000194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054895490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/36/27/311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059078405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8121/aa6dc2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085383968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/17358787-2017-0032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091668114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8121/aac110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103720563"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "Norm resolvent approximation for a wide class of point interactions in one dimension is constructed. To analyse the limit behaviour of Schr\u00f6dinger operators with localized singular rank-two perturbations coupled with \u03b4-like potentials as the support of perturbation shrinks to a point, we show that the set of limit operators is quite rich. Depending on parameters of the perturbation, the limit operators are described by both the connected and separated boundary conditions. In particular an approximation for a four-parametric subfamily of all the connected point interactions is built. We give examples of the singular perturbed Schr\u00f6dinger operators without localized gauge fields, which converge to point interactions with the non-trivial phase parameter. We also construct an approximation for the point interactions that are described by different types of the separated boundary conditions such as the Robin\u2013Dirichlet, the Neumann\u2013Neumann or the Robin\u2013Robin types.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-018-2482-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Schr\u00f6dinger Operators with Singular Rank-Two Perturbations and Point Interactions", 
    "pagination": "57", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1bf31b8919ef284fa3850334a84846442dc33270de455767ed42f43bebc2874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-018-2482-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105740894"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-018-2482-2", 
      "https://app.dimensions.ai/details/publication/pub.1105740894"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00020-018-2482-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2482-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2482-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2482-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2482-2'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-018-2482-2 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N62d4f97d4a8b4411b1c813e9d7c76c33
4 schema:citation sg:pub.10.1007/bf01067286
5 sg:pub.10.1007/bf02487279
6 sg:pub.10.1007/s00020-012-2027-z
7 sg:pub.10.1007/s002200100567
8 sg:pub.10.1007/s10773-010-0641-6
9 sg:pub.10.1007/s11005-014-0706-1
10 sg:pub.10.1023/a:1022932229094
11 https://doi.org/10.1016/0034-4877(86)90045-5
12 https://doi.org/10.1016/j.jfa.2008.10.023
13 https://doi.org/10.1016/j.jmaa.2006.10.070
14 https://doi.org/10.1016/j.physleta.2009.02.025
15 https://doi.org/10.1016/s0375-9601(98)00188-1
16 https://doi.org/10.1017/s0308210512000194
17 https://doi.org/10.1063/1.4936302
18 https://doi.org/10.1088/0305-4470/36/27/311
19 https://doi.org/10.1088/0305-4470/37/29/l01
20 https://doi.org/10.1088/1751-8113/43/10/105302
21 https://doi.org/10.1088/1751-8113/43/15/155204
22 https://doi.org/10.1088/1751-8113/44/37/375305
23 https://doi.org/10.1088/1751-8113/46/38/385305
24 https://doi.org/10.1088/1751-8113/49/2/025302
25 https://doi.org/10.1088/1751-8121/aa6dc2
26 https://doi.org/10.1088/1751-8121/aac110
27 https://doi.org/10.1090/s0002-9939-02-06694-7
28 https://doi.org/10.1166/asl.2008.019
29 https://doi.org/10.1215/17358787-2017-0032
30 schema:datePublished 2018-10
31 schema:datePublishedReg 2018-10-01
32 schema:description Norm resolvent approximation for a wide class of point interactions in one dimension is constructed. To analyse the limit behaviour of Schrödinger operators with localized singular rank-two perturbations coupled with δ-like potentials as the support of perturbation shrinks to a point, we show that the set of limit operators is quite rich. Depending on parameters of the perturbation, the limit operators are described by both the connected and separated boundary conditions. In particular an approximation for a four-parametric subfamily of all the connected point interactions is built. We give examples of the singular perturbed Schrödinger operators without localized gauge fields, which converge to point interactions with the non-trivial phase parameter. We also construct an approximation for the point interactions that are described by different types of the separated boundary conditions such as the Robin–Dirichlet, the Neumann–Neumann or the Robin–Robin types.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N9e0a52d760e24724a498e6a9e509aeaa
37 Nf334aca933224b4ea7c7e75d93add9aa
38 sg:journal.1136245
39 schema:name Schrödinger Operators with Singular Rank-Two Perturbations and Point Interactions
40 schema:pagination 57
41 schema:productId N0051daee27ad45bebfae4f4e76d21d7f
42 Nae8dfc250cb54bdea5305aff3f20633a
43 Nba1e162da4b64e0ba8dacd64f7ff4741
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105740894
45 https://doi.org/10.1007/s00020-018-2482-2
46 schema:sdDatePublished 2019-04-10T20:51
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nd4caa0249e6a4b82be3abc677d054147
49 schema:url http://link.springer.com/10.1007%2Fs00020-018-2482-2
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0051daee27ad45bebfae4f4e76d21d7f schema:name dimensions_id
54 schema:value pub.1105740894
55 rdf:type schema:PropertyValue
56 N62d4f97d4a8b4411b1c813e9d7c76c33 rdf:first sg:person.016005241735.08
57 rdf:rest rdf:nil
58 N9e0a52d760e24724a498e6a9e509aeaa schema:volumeNumber 90
59 rdf:type schema:PublicationVolume
60 Nae8dfc250cb54bdea5305aff3f20633a schema:name readcube_id
61 schema:value d1bf31b8919ef284fa3850334a84846442dc33270de455767ed42f43bebc2874
62 rdf:type schema:PropertyValue
63 Nba1e162da4b64e0ba8dacd64f7ff4741 schema:name doi
64 schema:value 10.1007/s00020-018-2482-2
65 rdf:type schema:PropertyValue
66 Nd4caa0249e6a4b82be3abc677d054147 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nf334aca933224b4ea7c7e75d93add9aa schema:issueNumber 5
69 rdf:type schema:PublicationIssue
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
74 schema:name Interdisciplinary Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1136245 schema:issn 0378-620X
77 1420-8989
78 schema:name Integral Equations and Operator Theory
79 rdf:type schema:Periodical
80 sg:person.016005241735.08 schema:affiliation https://www.grid.ac/institutes/grid.77054.31
81 schema:familyName Golovaty
82 schema:givenName Yuriy
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005241735.08
84 rdf:type schema:Person
85 sg:pub.10.1007/bf01067286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047970234
86 https://doi.org/10.1007/bf01067286
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf02487279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033092641
89 https://doi.org/10.1007/bf02487279
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s00020-012-2027-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024558671
92 https://doi.org/10.1007/s00020-012-2027-z
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s002200100567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013797885
95 https://doi.org/10.1007/s002200100567
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s10773-010-0641-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009862562
98 https://doi.org/10.1007/s10773-010-0641-6
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s11005-014-0706-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007609831
101 https://doi.org/10.1007/s11005-014-0706-1
102 rdf:type schema:CreativeWork
103 sg:pub.10.1023/a:1022932229094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035418274
104 https://doi.org/10.1023/a:1022932229094
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0034-4877(86)90045-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031787176
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jfa.2008.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010089835
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.jmaa.2006.10.070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036526921
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.physleta.2009.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033235695
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0375-9601(98)00188-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052276094
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/s0308210512000194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054895490
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1063/1.4936302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018390580
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/0305-4470/36/27/311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059078405
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/0305-4470/37/29/l01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013219212
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/1751-8113/43/10/105302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034820775
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/1751-8113/43/15/155204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038420910
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/1751-8113/44/37/375305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015564346
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/1751-8113/46/38/385305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008028536
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1088/1751-8113/49/2/025302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048917574
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1088/1751-8121/aa6dc2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085383968
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/1751-8121/aac110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103720563
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/s0002-9939-02-06694-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031918745
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1166/asl.2008.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048489574
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1215/17358787-2017-0032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091668114
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.77054.31 schema:alternateName Lviv University
145 schema:name Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universytetska Str., 79000, Lviv, Ukraine
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...