Multivariable Bergman Shifts and Wold Decompositions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Jörg Eschmeier, Sebastian Langendörfer

ABSTRACT

Let Hm(B) be the analytic functional Hilbert space on the unit ball B⊂Cn with reproducing kernel Km(z,w)=(1-⟨z,w⟩)-m. Using algebraic operator identities we characterize those commuting row contractions T∈L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz∈L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball. More... »

PAGES

56

References to SciGraph publications

  • 2012-08. On Some Bergman Shift Operators in COMPLEX ANALYSIS AND OPERATOR THEORY
  • 2006-10. m-Isometric Commuting Tuples of Operators on a Hilbert Space in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3

    DOI

    http://dx.doi.org/10.1007/s00020-018-2481-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105738322


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Saarland University", 
              "id": "https://www.grid.ac/institutes/grid.11749.3a", 
              "name": [
                "Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eschmeier", 
            "givenName": "J\u00f6rg", 
            "id": "sg:person.010071575021.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Saarland University", 
              "id": "https://www.grid.ac/institutes/grid.11749.3a", 
              "name": [
                "Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Langend\u00f6rfer", 
            "givenName": "Sebastian", 
            "id": "sg:person.010163224765.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163224765.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/crll.2005.2005.587.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002503555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.2001.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010381505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-010-0101-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010734469", 
              "https://doi.org/10.1007/s11785-010-0101-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00020-006-1424-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040092179", 
              "https://doi.org/10.1007/s00020-006-1424-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2014.09.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044265975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2159525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069794265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7900/jot.2016may04.2134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090563604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2017.10.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092557794"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "Let Hm(B) be the analytic functional Hilbert space on the unit ball B\u2282Cn with reproducing kernel Km(z,w)=(1-\u27e8z,w\u27e9)-m. Using algebraic operator identities we characterize those commuting row contractions T\u2208L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz\u2208L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829\u2013842, 2012) to the case of the unit ball.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s00020-018-2481-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136245", 
            "issn": [
              "0378-620X", 
              "1420-8989"
            ], 
            "name": "Integral Equations and Operator Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "name": "Multivariable Bergman Shifts and Wold Decompositions", 
        "pagination": "56", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "983586493f2892fb66f10aebf948f762b8d0849bb62328a93ac2c04644b5d9e0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00020-018-2481-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105738322"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00020-018-2481-3", 
          "https://app.dimensions.ai/details/publication/pub.1105738322"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000535.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00020-018-2481-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00020-018-2481-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nedc5dd8698d14d9ba0c89cb24744ebb7
    4 schema:citation sg:pub.10.1007/s00020-006-1424-6
    5 sg:pub.10.1007/s11785-010-0101-6
    6 https://doi.org/10.1016/j.jfa.2017.10.018
    7 https://doi.org/10.1016/j.laa.2014.09.044
    8 https://doi.org/10.1515/crll.2001.013
    9 https://doi.org/10.1515/crll.2005.2005.587.49
    10 https://doi.org/10.2307/2159525
    11 https://doi.org/10.7900/jot.2016may04.2134
    12 schema:datePublished 2018-10
    13 schema:datePublishedReg 2018-10-01
    14 schema:description Let Hm(B) be the analytic functional Hilbert space on the unit ball B⊂Cn with reproducing kernel Km(z,w)=(1-⟨z,w⟩)-m. Using algebraic operator identities we characterize those commuting row contractions T∈L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz∈L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball.
    15 schema:genre non_research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N3295237aaf59461aa748851c3dac391a
    19 Nefae1055d6004bd79ddf4e4ccc436c02
    20 sg:journal.1136245
    21 schema:name Multivariable Bergman Shifts and Wold Decompositions
    22 schema:pagination 56
    23 schema:productId N04300565beff4ce782fc24fd93e45361
    24 N06b29291b82a4b0eb2b35122cf3c7835
    25 N29ce75dceda14728a88951285632b060
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105738322
    27 https://doi.org/10.1007/s00020-018-2481-3
    28 schema:sdDatePublished 2019-04-10T15:05
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N50c6970f7312410790307b2e4d8c803c
    31 schema:url http://link.springer.com/10.1007%2Fs00020-018-2481-3
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N04300565beff4ce782fc24fd93e45361 schema:name readcube_id
    36 schema:value 983586493f2892fb66f10aebf948f762b8d0849bb62328a93ac2c04644b5d9e0
    37 rdf:type schema:PropertyValue
    38 N06b29291b82a4b0eb2b35122cf3c7835 schema:name doi
    39 schema:value 10.1007/s00020-018-2481-3
    40 rdf:type schema:PropertyValue
    41 N29ce75dceda14728a88951285632b060 schema:name dimensions_id
    42 schema:value pub.1105738322
    43 rdf:type schema:PropertyValue
    44 N3295237aaf59461aa748851c3dac391a schema:issueNumber 5
    45 rdf:type schema:PublicationIssue
    46 N452f81aacb8d463c9c8e84c5599a6c6b rdf:first sg:person.010163224765.00
    47 rdf:rest rdf:nil
    48 N50c6970f7312410790307b2e4d8c803c schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nedc5dd8698d14d9ba0c89cb24744ebb7 rdf:first sg:person.010071575021.11
    51 rdf:rest N452f81aacb8d463c9c8e84c5599a6c6b
    52 Nefae1055d6004bd79ddf4e4ccc436c02 schema:volumeNumber 90
    53 rdf:type schema:PublicationVolume
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136245 schema:issn 0378-620X
    61 1420-8989
    62 schema:name Integral Equations and Operator Theory
    63 rdf:type schema:Periodical
    64 sg:person.010071575021.11 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
    65 schema:familyName Eschmeier
    66 schema:givenName Jörg
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11
    68 rdf:type schema:Person
    69 sg:person.010163224765.00 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
    70 schema:familyName Langendörfer
    71 schema:givenName Sebastian
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163224765.00
    73 rdf:type schema:Person
    74 sg:pub.10.1007/s00020-006-1424-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092179
    75 https://doi.org/10.1007/s00020-006-1424-6
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/s11785-010-0101-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010734469
    78 https://doi.org/10.1007/s11785-010-0101-6
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/j.jfa.2017.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092557794
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/j.laa.2014.09.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265975
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1515/crll.2001.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010381505
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1515/crll.2005.2005.587.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503555
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.2307/2159525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069794265
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.7900/jot.2016may04.2134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090563604
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.11749.3a schema:alternateName Saarland University
    93 schema:name Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...