Multivariable Bergman Shifts and Wold Decompositions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10

AUTHORS

Jörg Eschmeier, Sebastian Langendörfer

ABSTRACT

Let Hm(B) be the analytic functional Hilbert space on the unit ball B⊂Cn with reproducing kernel Km(z,w)=(1-⟨z,w⟩)-m. Using algebraic operator identities we characterize those commuting row contractions T∈L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz∈L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball. More... »

PAGES

56

References to SciGraph publications

  • 2012-08. On Some Bergman Shift Operators in COMPLEX ANALYSIS AND OPERATOR THEORY
  • 2006-10. m-Isometric Commuting Tuples of Operators on a Hilbert Space in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3

    DOI

    http://dx.doi.org/10.1007/s00020-018-2481-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105738322


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Saarland University", 
              "id": "https://www.grid.ac/institutes/grid.11749.3a", 
              "name": [
                "Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eschmeier", 
            "givenName": "J\u00f6rg", 
            "id": "sg:person.010071575021.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Saarland University", 
              "id": "https://www.grid.ac/institutes/grid.11749.3a", 
              "name": [
                "Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Langend\u00f6rfer", 
            "givenName": "Sebastian", 
            "id": "sg:person.010163224765.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163224765.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1515/crll.2005.2005.587.49", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002503555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/crll.2001.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010381505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11785-010-0101-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010734469", 
              "https://doi.org/10.1007/s11785-010-0101-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00020-006-1424-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040092179", 
              "https://doi.org/10.1007/s00020-006-1424-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.laa.2014.09.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044265975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2159525", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069794265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7900/jot.2016may04.2134", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090563604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jfa.2017.10.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092557794"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10", 
        "datePublishedReg": "2018-10-01", 
        "description": "Let Hm(B) be the analytic functional Hilbert space on the unit ball B\u2282Cn with reproducing kernel Km(z,w)=(1-\u27e8z,w\u27e9)-m. Using algebraic operator identities we characterize those commuting row contractions T\u2208L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz\u2208L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829\u2013842, 2012) to the case of the unit ball.", 
        "genre": "non_research_article", 
        "id": "sg:pub.10.1007/s00020-018-2481-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136245", 
            "issn": [
              "0378-620X", 
              "1420-8989"
            ], 
            "name": "Integral Equations and Operator Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "90"
          }
        ], 
        "name": "Multivariable Bergman Shifts and Wold Decompositions", 
        "pagination": "56", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "983586493f2892fb66f10aebf948f762b8d0849bb62328a93ac2c04644b5d9e0"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00020-018-2481-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105738322"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00020-018-2481-3", 
          "https://app.dimensions.ai/details/publication/pub.1105738322"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000535.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs00020-018-2481-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00020-018-2481-3 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N6eff00155f8447c5a9e5f9d27bafbc5f
    4 schema:citation sg:pub.10.1007/s00020-006-1424-6
    5 sg:pub.10.1007/s11785-010-0101-6
    6 https://doi.org/10.1016/j.jfa.2017.10.018
    7 https://doi.org/10.1016/j.laa.2014.09.044
    8 https://doi.org/10.1515/crll.2001.013
    9 https://doi.org/10.1515/crll.2005.2005.587.49
    10 https://doi.org/10.2307/2159525
    11 https://doi.org/10.7900/jot.2016may04.2134
    12 schema:datePublished 2018-10
    13 schema:datePublishedReg 2018-10-01
    14 schema:description Let Hm(B) be the analytic functional Hilbert space on the unit ball B⊂Cn with reproducing kernel Km(z,w)=(1-⟨z,w⟩)-m. Using algebraic operator identities we characterize those commuting row contractions T∈L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz∈L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball.
    15 schema:genre non_research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree true
    18 schema:isPartOf N0c67cb699a004844b601ee1c1a8d3ce5
    19 N760ad6527f1c4f538b6ac93ca8c63d80
    20 sg:journal.1136245
    21 schema:name Multivariable Bergman Shifts and Wold Decompositions
    22 schema:pagination 56
    23 schema:productId N833aa0120723407dad42bc29c3c70d58
    24 N9c3db3a81f3f48f69f4e3722b0a86e09
    25 Nf7c53cabee0d4861b045efc0e6e3d916
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105738322
    27 https://doi.org/10.1007/s00020-018-2481-3
    28 schema:sdDatePublished 2019-04-10T15:05
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N71305a969ea5485593c33b81958979aa
    31 schema:url http://link.springer.com/10.1007%2Fs00020-018-2481-3
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N0c67cb699a004844b601ee1c1a8d3ce5 schema:issueNumber 5
    36 rdf:type schema:PublicationIssue
    37 N6eff00155f8447c5a9e5f9d27bafbc5f rdf:first sg:person.010071575021.11
    38 rdf:rest Nfc42b7ee202440ca8977ee2e929af0e2
    39 N71305a969ea5485593c33b81958979aa schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 N760ad6527f1c4f538b6ac93ca8c63d80 schema:volumeNumber 90
    42 rdf:type schema:PublicationVolume
    43 N833aa0120723407dad42bc29c3c70d58 schema:name dimensions_id
    44 schema:value pub.1105738322
    45 rdf:type schema:PropertyValue
    46 N9c3db3a81f3f48f69f4e3722b0a86e09 schema:name readcube_id
    47 schema:value 983586493f2892fb66f10aebf948f762b8d0849bb62328a93ac2c04644b5d9e0
    48 rdf:type schema:PropertyValue
    49 Nf7c53cabee0d4861b045efc0e6e3d916 schema:name doi
    50 schema:value 10.1007/s00020-018-2481-3
    51 rdf:type schema:PropertyValue
    52 Nfc42b7ee202440ca8977ee2e929af0e2 rdf:first sg:person.010163224765.00
    53 rdf:rest rdf:nil
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136245 schema:issn 0378-620X
    61 1420-8989
    62 schema:name Integral Equations and Operator Theory
    63 rdf:type schema:Periodical
    64 sg:person.010071575021.11 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
    65 schema:familyName Eschmeier
    66 schema:givenName Jörg
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11
    68 rdf:type schema:Person
    69 sg:person.010163224765.00 schema:affiliation https://www.grid.ac/institutes/grid.11749.3a
    70 schema:familyName Langendörfer
    71 schema:givenName Sebastian
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163224765.00
    73 rdf:type schema:Person
    74 sg:pub.10.1007/s00020-006-1424-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092179
    75 https://doi.org/10.1007/s00020-006-1424-6
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/s11785-010-0101-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010734469
    78 https://doi.org/10.1007/s11785-010-0101-6
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1016/j.jfa.2017.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092557794
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/j.laa.2014.09.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044265975
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1515/crll.2001.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010381505
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1515/crll.2005.2005.587.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002503555
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.2307/2159525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069794265
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.7900/jot.2016may04.2134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090563604
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.11749.3a schema:alternateName Saarland University
    93 schema:name Fachrichtung Mathematik, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...