Ontology type: schema:ScholarlyArticle Open Access: True
2018-10
AUTHORSJörg Eschmeier, Sebastian Langendörfer
ABSTRACTLet Hm(B) be the analytic functional Hilbert space on the unit ball B⊂Cn with reproducing kernel Km(z,w)=(1-⟨z,w⟩)-m. Using algebraic operator identities we characterize those commuting row contractions T∈L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz∈L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829–842, 2012) to the case of the unit ball. More... »
PAGES56
http://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3
DOIhttp://dx.doi.org/10.1007/s00020-018-2481-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1105738322
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Saarland University",
"id": "https://www.grid.ac/institutes/grid.11749.3a",
"name": [
"Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
],
"type": "Organization"
},
"familyName": "Eschmeier",
"givenName": "J\u00f6rg",
"id": "sg:person.010071575021.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Saarland University",
"id": "https://www.grid.ac/institutes/grid.11749.3a",
"name": [
"Fachrichtung Mathematik, Universit\u00e4t des Saarlandes, Postfach 151150, 66041, Saarbr\u00fccken, Germany"
],
"type": "Organization"
},
"familyName": "Langend\u00f6rfer",
"givenName": "Sebastian",
"id": "sg:person.010163224765.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163224765.00"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1515/crll.2005.2005.587.49",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002503555"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/crll.2001.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010381505"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11785-010-0101-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010734469",
"https://doi.org/10.1007/s11785-010-0101-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-006-1424-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040092179",
"https://doi.org/10.1007/s00020-006-1424-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2014.09.044",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044265975"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/2159525",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069794265"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.7900/jot.2016may04.2134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090563604"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfa.2017.10.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092557794"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-10",
"datePublishedReg": "2018-10-01",
"description": "Let Hm(B) be the analytic functional Hilbert space on the unit ball B\u2282Cn with reproducing kernel Km(z,w)=(1-\u27e8z,w\u27e9)-m. Using algebraic operator identities we characterize those commuting row contractions T\u2208L(H)n on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple Mz\u2208L(Hm(B))n. For m=1, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at z=0. For m=1=n, one obtains the classical Wold decomposition of isometries. To prove the above results we extend a corresponding one-variable Wold-type decomposition theorem of Giselsson and Olofsson (Complex Anal Oper Theory 6:829\u2013842, 2012) to the case of the unit ball.",
"genre": "non_research_article",
"id": "sg:pub.10.1007/s00020-018-2481-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136245",
"issn": [
"0378-620X",
"1420-8989"
],
"name": "Integral Equations and Operator Theory",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "90"
}
],
"name": "Multivariable Bergman Shifts and Wold Decompositions",
"pagination": "56",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"983586493f2892fb66f10aebf948f762b8d0849bb62328a93ac2c04644b5d9e0"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00020-018-2481-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1105738322"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00020-018-2481-3",
"https://app.dimensions.ai/details/publication/pub.1105738322"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000535.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs00020-018-2481-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2481-3'
This table displays all metadata directly associated to this object as RDF triples.
94 TRIPLES
21 PREDICATES
35 URIs
19 LITERALS
7 BLANK NODES