Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein’s Resolvent Formula View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08

AUTHORS

Aad Dijksma, Heinz Langer

ABSTRACT

Let S be a symmetric operator with finite and equal defect numbers in the Hilbert space H. We study the compressions PHA~|H of the self-adjoint extensions A~ of S in some Hilbert space H~⊃H. These compressions are symmetric extensions of S in H. We characterize properties of these compressions through the corresponding parameter of A~ in M.G. Krein’s resolvent formula. If dim(H~⊖H) is finite, according to Stenger’s lemma the compression of A~ is self-adjoint. In this case we express the corresponding parameter for the compression of A~ in Krein’s formula through the parameter of the self-adjoint extension A~. More... »

PAGES

41

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3

DOI

http://dx.doi.org/10.1007/s00020-018-2465-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104462397


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cultural Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8\u201310, 1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(91)90024-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003147419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-016-2313-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005012526", 
          "https://doi.org/10.1007/s00020-016-2313-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-016-2313-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005012526", 
          "https://doi.org/10.1007/s00020-016-2313-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.laa.2013.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007280761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-011-1884-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012886223", 
          "https://doi.org/10.1007/s00020-011-1884-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1966-0203464-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014877278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015145751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015145751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1061920809010026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020810486", 
          "https://doi.org/10.1134/s1061920809010026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1061920809010026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020810486", 
          "https://doi.org/10.1134/s1061920809010026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-012-1991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022276484", 
          "https://doi.org/10.1007/s00020-012-1991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1968-11957-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043843157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-09-09812-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059332209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1977.72.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069067067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-62362-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092033156", 
          "https://doi.org/10.1007/978-3-319-62362-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-62362-7_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092033156", 
          "https://doi.org/10.1007/978-3-319-62362-7_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098843990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0183-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716487", 
          "https://doi.org/10.1007/978-94-009-0183-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-0183-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109716487", 
          "https://doi.org/10.1007/978-94-009-0183-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "Let S be a symmetric operator with finite and equal defect numbers in the Hilbert space H. We study the compressions PHA~|H of the self-adjoint extensions A~ of S in some Hilbert space H~\u2283H. These compressions are symmetric extensions of S in H. We characterize properties of these compressions through the corresponding parameter of A~ in M.G. Krein\u2019s resolvent formula. If dim(H~\u2296H) is finite, according to Stenger\u2019s lemma the compression of A~ is self-adjoint. In this case we express the corresponding parameter for the compression of A~ in Krein\u2019s formula through the parameter of the self-adjoint extension A~.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-018-2465-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein\u2019s Resolvent Formula", 
    "pagination": "41", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab6e14ab435a7364c35742eff91b535d31dc2f6930c9bac9b9a99f115d3d156b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-018-2465-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104462397"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-018-2465-3", 
      "https://app.dimensions.ai/details/publication/pub.1104462397"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00020-018-2465-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-018-2465-3 schema:about anzsrc-for:20
2 anzsrc-for:2002
3 schema:author Nf927382cc0514e6593bebdf68187c96c
4 schema:citation sg:pub.10.1007/978-3-319-62362-7_6
5 sg:pub.10.1007/978-94-009-0183-4
6 sg:pub.10.1007/s00020-011-1884-1
7 sg:pub.10.1007/s00020-012-1991-7
8 sg:pub.10.1007/s00020-016-2313-2
9 sg:pub.10.1134/s1061920809010026
10 https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d
11 https://doi.org/10.1016/0022-1236(91)90024-y
12 https://doi.org/10.1016/j.laa.2013.04.003
13 https://doi.org/10.1090/memo/0134
14 https://doi.org/10.1090/s0002-9904-1968-11957-3
15 https://doi.org/10.1090/s0002-9939-09-09812-8
16 https://doi.org/10.1090/s0002-9939-1966-0203464-1
17 https://doi.org/10.1142/p493
18 https://doi.org/10.2140/pjm.1977.72.135
19 schema:datePublished 2018-08
20 schema:datePublishedReg 2018-08-01
21 schema:description Let S be a symmetric operator with finite and equal defect numbers in the Hilbert space H. We study the compressions PHA~|H of the self-adjoint extensions A~ of S in some Hilbert space H~⊃H. These compressions are symmetric extensions of S in H. We characterize properties of these compressions through the corresponding parameter of A~ in M.G. Krein’s resolvent formula. If dim(H~⊖H) is finite, according to Stenger’s lemma the compression of A~ is self-adjoint. In this case we express the corresponding parameter for the compression of A~ in Krein’s formula through the parameter of the self-adjoint extension A~.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf N2726092e323d43589829dcaf18cb55a4
26 N6bbf07b0bcba4453b222ceb4c59abaf3
27 sg:journal.1136245
28 schema:name Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein’s Resolvent Formula
29 schema:pagination 41
30 schema:productId N27a35da95c2b4223b9cee51d2f5d4f8a
31 N433a660efb554592bc8d88664e615c83
32 N5b42e039e2994020ae71b5b51ee9eef0
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104462397
34 https://doi.org/10.1007/s00020-018-2465-3
35 schema:sdDatePublished 2019-04-11T10:39
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Na338895581ee4f6ea18312e9ae57b13c
38 schema:url https://link.springer.com/10.1007%2Fs00020-018-2465-3
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N2726092e323d43589829dcaf18cb55a4 schema:issueNumber 4
43 rdf:type schema:PublicationIssue
44 N27a35da95c2b4223b9cee51d2f5d4f8a schema:name doi
45 schema:value 10.1007/s00020-018-2465-3
46 rdf:type schema:PropertyValue
47 N2e25b015624c48f0b1b03b3baebefceb rdf:first sg:person.07450173411.71
48 rdf:rest rdf:nil
49 N433a660efb554592bc8d88664e615c83 schema:name readcube_id
50 schema:value ab6e14ab435a7364c35742eff91b535d31dc2f6930c9bac9b9a99f115d3d156b
51 rdf:type schema:PropertyValue
52 N5b42e039e2994020ae71b5b51ee9eef0 schema:name dimensions_id
53 schema:value pub.1104462397
54 rdf:type schema:PropertyValue
55 N6bbf07b0bcba4453b222ceb4c59abaf3 schema:volumeNumber 90
56 rdf:type schema:PublicationVolume
57 Na338895581ee4f6ea18312e9ae57b13c schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nf927382cc0514e6593bebdf68187c96c rdf:first sg:person.013762723211.39
60 rdf:rest N2e25b015624c48f0b1b03b3baebefceb
61 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
62 schema:name Language, Communication and Culture
63 rdf:type schema:DefinedTerm
64 anzsrc-for:2002 schema:inDefinedTermSet anzsrc-for:
65 schema:name Cultural Studies
66 rdf:type schema:DefinedTerm
67 sg:journal.1136245 schema:issn 0378-620X
68 1420-8989
69 schema:name Integral Equations and Operator Theory
70 rdf:type schema:Periodical
71 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
72 schema:familyName Dijksma
73 schema:givenName Aad
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
75 rdf:type schema:Person
76 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
77 schema:familyName Langer
78 schema:givenName Heinz
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
80 rdf:type schema:Person
81 sg:pub.10.1007/978-3-319-62362-7_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092033156
82 https://doi.org/10.1007/978-3-319-62362-7_6
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-94-009-0183-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109716487
85 https://doi.org/10.1007/978-94-009-0183-4
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s00020-011-1884-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012886223
88 https://doi.org/10.1007/s00020-011-1884-1
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s00020-012-1991-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022276484
91 https://doi.org/10.1007/s00020-012-1991-7
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00020-016-2313-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005012526
94 https://doi.org/10.1007/s00020-016-2313-2
95 rdf:type schema:CreativeWork
96 sg:pub.10.1134/s1061920809010026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020810486
97 https://doi.org/10.1134/s1061920809010026
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1015145751
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0022-1236(91)90024-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1003147419
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.laa.2013.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007280761
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1090/memo/0134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343183
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1090/s0002-9904-1968-11957-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043843157
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1090/s0002-9939-09-09812-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059332209
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1090/s0002-9939-1966-0203464-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014877278
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1142/p493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098843990
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2140/pjm.1977.72.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069067067
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
118 schema:name Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, Netherlands
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
121 schema:name Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8–10, 1040, Vienna, Austria
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...