Ontology type: schema:ScholarlyArticle Open Access: True
2018-08
AUTHORS ABSTRACTLet S be a symmetric operator with finite and equal defect numbers in the Hilbert space H. We study the compressions PHA~|H of the self-adjoint extensions A~ of S in some Hilbert space H~⊃H. These compressions are symmetric extensions of S in H. We characterize properties of these compressions through the corresponding parameter of A~ in M.G. Krein’s resolvent formula. If dim(H~⊖H) is finite, according to Stenger’s lemma the compression of A~ is self-adjoint. In this case we express the corresponding parameter for the compression of A~ in Krein’s formula through the parameter of the self-adjoint extension A~. More... »
PAGES41
http://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3
DOIhttp://dx.doi.org/10.1007/s00020-018-2465-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1104462397
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2002",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Cultural Studies",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Language, Communication and Culture",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Johann Bernoulli Institute of Mathematics and Computer Science, University of Groningen, P.O. Box 407, 9700 AK, Groningen, Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Wien",
"id": "https://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8\u201310, 1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Langer",
"givenName": "Heinz",
"id": "sg:person.07450173411.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/0022-1236(91)90024-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003147419"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-016-2313-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005012526",
"https://doi.org/10.1007/s00020-016-2313-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-016-2313-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005012526",
"https://doi.org/10.1007/s00020-016-2313-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.laa.2013.04.003",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007280761"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-011-1884-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012886223",
"https://doi.org/10.1007/s00020-011-1884-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-1966-0203464-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014877278"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015145751"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/1522-2616(200010)218:1<61::aid-mana61>3.0.co;2-d",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015145751"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061920809010026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020810486",
"https://doi.org/10.1134/s1061920809010026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1134/s1061920809010026",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020810486",
"https://doi.org/10.1134/s1061920809010026"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-012-1991-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022276484",
"https://doi.org/10.1007/s00020-012-1991-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9904-1968-11957-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043843157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9939-09-09812-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059332209"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/memo/0134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059343183"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2140/pjm.1977.72.135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069067067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-62362-7_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092033156",
"https://doi.org/10.1007/978-3-319-62362-7_6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-319-62362-7_6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092033156",
"https://doi.org/10.1007/978-3-319-62362-7_6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1142/p493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098843990"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-0183-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109716487",
"https://doi.org/10.1007/978-94-009-0183-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-0183-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1109716487",
"https://doi.org/10.1007/978-94-009-0183-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2018-08",
"datePublishedReg": "2018-08-01",
"description": "Let S be a symmetric operator with finite and equal defect numbers in the Hilbert space H. We study the compressions PHA~|H of the self-adjoint extensions A~ of S in some Hilbert space H~\u2283H. These compressions are symmetric extensions of S in H. We characterize properties of these compressions through the corresponding parameter of A~ in M.G. Krein\u2019s resolvent formula. If dim(H~\u2296H) is finite, according to Stenger\u2019s lemma the compression of A~ is self-adjoint. In this case we express the corresponding parameter for the compression of A~ in Krein\u2019s formula through the parameter of the self-adjoint extension A~.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00020-018-2465-3",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136245",
"issn": [
"0378-620X",
"1420-8989"
],
"name": "Integral Equations and Operator Theory",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "90"
}
],
"name": "Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein\u2019s Resolvent Formula",
"pagination": "41",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"ab6e14ab435a7364c35742eff91b535d31dc2f6930c9bac9b9a99f115d3d156b"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00020-018-2465-3"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1104462397"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00020-018-2465-3",
"https://app.dimensions.ai/details/publication/pub.1104462397"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T10:39",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113677_00000004.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00020-018-2465-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-018-2465-3'
This table displays all metadata directly associated to this object as RDF triples.
122 TRIPLES
21 PREDICATES
42 URIs
19 LITERALS
7 BLANK NODES