Off-Diagonal Heat Kernel Asymptotics of Pseudodifferential Operators on Closed Manifolds and Subordinate Brownian Motion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-03

AUTHORS

M. A. Fahrenwaldt

ABSTRACT

We derive the off-diagonal short-time asymptotics of the heat kernels of functions of generalised Laplacians on a closed manifold. As an intermediate step we give an explicit asymptotic series for the kernels of the complex powers of generalised Laplacians. Each asymptotic series is formulated in terms of the geodesic distance. The key application concerns upper bounds for the transition density of subordinate Brownian motion. The approach is highly explicit and tractable. More... »

PAGES

327-347

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-017-2344-3

DOI

http://dx.doi.org/10.1007/s00020-017-2344-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083537441


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heriot-Watt University", 
          "id": "https://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Department of Actuarial Mathematics and Statistics Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fahrenwaldt", 
        "givenName": "M. A.", 
        "id": "sg:person.013422372413.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1017/s1446788700039239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s1446788700039239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004852801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006877489", 
          "https://doi.org/10.1007/s11425-009-0100-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-009-0100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006877489", 
          "https://doi.org/10.1007/s11425-009-0100-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200310034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007954226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511566165.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024042962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/jlms/jdw018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024943593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00028-013-0206-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030230197", 
          "https://doi.org/10.1007/s00028-013-0206-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56579-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031297087", 
          "https://doi.org/10.1007/978-3-642-56579-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.2000.3569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034978683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11118-015-9514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042027922", 
          "https://doi.org/10.1007/s11118-015-9514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-09209-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044517410", 
          "https://doi.org/10.1007/978-3-662-09209-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11425-012-4368-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052742442", 
          "https://doi.org/10.1007/s11425-012-4368-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2956-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053624613", 
          "https://doi.org/10.1007/978-1-4757-2956-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1053624613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1053624613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/memo/0906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059343955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aop532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/10-aop611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064391465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1952.2.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069062227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.1560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084408150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110818574.449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086742293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/010/0237943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089193191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198568360.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098725665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/gsm/038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098730604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098908330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109710144", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58088-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710144", 
          "https://doi.org/10.1007/978-3-642-58088-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58088-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710144", 
          "https://doi.org/10.1007/978-3-642-58088-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "We derive the off-diagonal short-time asymptotics of the heat kernels of functions of generalised Laplacians on a closed manifold. As an intermediate step we give an explicit asymptotic series for the kernels of the complex powers of generalised Laplacians. Each asymptotic series is formulated in terms of the geodesic distance. The key application concerns upper bounds for the transition density of subordinate Brownian motion. The approach is highly explicit and tractable.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-017-2344-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "87"
      }
    ], 
    "name": "Off-Diagonal Heat Kernel Asymptotics of Pseudodifferential Operators on Closed Manifolds and Subordinate Brownian Motion", 
    "pagination": "327-347", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3c5ea981e05fb62ae3f926a9291d46459c8e19279f1d4593758d3bbcbfe7e88f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-017-2344-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083537441"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-017-2344-3", 
      "https://app.dimensions.ai/details/publication/pub.1083537441"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00020-017-2344-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-017-2344-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-017-2344-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-017-2344-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-017-2344-3'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-017-2344-3 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N1e1e3884c3e542b28609cc761a2576ca
4 schema:citation sg:pub.10.1007/978-1-4757-2956-6
5 sg:pub.10.1007/978-3-642-56579-3
6 sg:pub.10.1007/978-3-642-58088-8
7 sg:pub.10.1007/978-3-662-09209-5_1
8 sg:pub.10.1007/s00028-013-0206-2
9 sg:pub.10.1007/s11118-015-9514-1
10 sg:pub.10.1007/s11425-009-0100-0
11 sg:pub.10.1007/s11425-012-4368-0
12 https://app.dimensions.ai/details/publication/pub.1053624613
13 https://app.dimensions.ai/details/publication/pub.1109710144
14 https://doi.org/10.1002/mana.200310034
15 https://doi.org/10.1006/jfan.2000.3569
16 https://doi.org/10.1017/cbo9780511566165.008
17 https://doi.org/10.1017/s1446788700039239
18 https://doi.org/10.1090/gsm/038
19 https://doi.org/10.1090/memo/0906
20 https://doi.org/10.1090/pspum/010/0237943
21 https://doi.org/10.1093/acprof:oso/9780198568360.001.0001
22 https://doi.org/10.1112/jlms/jdw018
23 https://doi.org/10.1142/p245
24 https://doi.org/10.1214/10-aop532
25 https://doi.org/10.1214/10-aop611
26 https://doi.org/10.1515/9783110818574.449
27 https://doi.org/10.2140/pjm.1952.2.343
28 https://doi.org/10.2307/2373753
29 https://doi.org/10.24033/asens.1560
30 https://doi.org/10.4171/jems/231
31 schema:datePublished 2017-03
32 schema:datePublishedReg 2017-03-01
33 schema:description We derive the off-diagonal short-time asymptotics of the heat kernels of functions of generalised Laplacians on a closed manifold. As an intermediate step we give an explicit asymptotic series for the kernels of the complex powers of generalised Laplacians. Each asymptotic series is formulated in terms of the geodesic distance. The key application concerns upper bounds for the transition density of subordinate Brownian motion. The approach is highly explicit and tractable.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N1a653f03955f44ddaa9654890bdaf8aa
38 N72d9fc01fd19453997be7a4dba18098b
39 sg:journal.1136245
40 schema:name Off-Diagonal Heat Kernel Asymptotics of Pseudodifferential Operators on Closed Manifolds and Subordinate Brownian Motion
41 schema:pagination 327-347
42 schema:productId N1b02c0ef843b40cbb67ec70ecc3c367e
43 N3b96272501b745b7a0f4ef72a4da45dd
44 Nb323e638703b4d32a1823c08d73ff11a
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083537441
46 https://doi.org/10.1007/s00020-017-2344-3
47 schema:sdDatePublished 2019-04-11T09:53
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N6eb7340f24f44e97b663f352d34f3a7c
50 schema:url https://link.springer.com/10.1007%2Fs00020-017-2344-3
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N1a653f03955f44ddaa9654890bdaf8aa schema:volumeNumber 87
55 rdf:type schema:PublicationVolume
56 N1b02c0ef843b40cbb67ec70ecc3c367e schema:name readcube_id
57 schema:value 3c5ea981e05fb62ae3f926a9291d46459c8e19279f1d4593758d3bbcbfe7e88f
58 rdf:type schema:PropertyValue
59 N1e1e3884c3e542b28609cc761a2576ca rdf:first sg:person.013422372413.61
60 rdf:rest rdf:nil
61 N3b96272501b745b7a0f4ef72a4da45dd schema:name doi
62 schema:value 10.1007/s00020-017-2344-3
63 rdf:type schema:PropertyValue
64 N6eb7340f24f44e97b663f352d34f3a7c schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N72d9fc01fd19453997be7a4dba18098b schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 Nb323e638703b4d32a1823c08d73ff11a schema:name dimensions_id
69 schema:value pub.1083537441
70 rdf:type schema:PropertyValue
71 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
72 schema:name Psychology and Cognitive Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
75 schema:name Psychology
76 rdf:type schema:DefinedTerm
77 sg:journal.1136245 schema:issn 0378-620X
78 1420-8989
79 schema:name Integral Equations and Operator Theory
80 rdf:type schema:Periodical
81 sg:person.013422372413.61 schema:affiliation https://www.grid.ac/institutes/grid.9531.e
82 schema:familyName Fahrenwaldt
83 schema:givenName M. A.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013422372413.61
85 rdf:type schema:Person
86 sg:pub.10.1007/978-1-4757-2956-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053624613
87 https://doi.org/10.1007/978-1-4757-2956-6
88 rdf:type schema:CreativeWork
89 sg:pub.10.1007/978-3-642-56579-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031297087
90 https://doi.org/10.1007/978-3-642-56579-3
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/978-3-642-58088-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710144
93 https://doi.org/10.1007/978-3-642-58088-8
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-662-09209-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044517410
96 https://doi.org/10.1007/978-3-662-09209-5_1
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s00028-013-0206-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030230197
99 https://doi.org/10.1007/s00028-013-0206-2
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11118-015-9514-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042027922
102 https://doi.org/10.1007/s11118-015-9514-1
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11425-009-0100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006877489
105 https://doi.org/10.1007/s11425-009-0100-0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11425-012-4368-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052742442
108 https://doi.org/10.1007/s11425-012-4368-0
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1053624613 schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1109710144 schema:CreativeWork
112 https://doi.org/10.1002/mana.200310034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007954226
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1006/jfan.2000.3569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034978683
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1017/cbo9780511566165.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042962
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1017/s1446788700039239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004852801
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1090/gsm/038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098730604
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1090/memo/0906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059343955
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1090/pspum/010/0237943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089193191
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/acprof:oso/9780198568360.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098725665
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1112/jlms/jdw018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024943593
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1142/p245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098908330
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1214/10-aop532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391395
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1214/10-aop611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064391465
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1515/9783110818574.449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086742293
137 rdf:type schema:CreativeWork
138 https://doi.org/10.2140/pjm.1952.2.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062227
139 rdf:type schema:CreativeWork
140 https://doi.org/10.2307/2373753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900273
141 rdf:type schema:CreativeWork
142 https://doi.org/10.24033/asens.1560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084408150
143 rdf:type schema:CreativeWork
144 https://doi.org/10.4171/jems/231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317817
145 rdf:type schema:CreativeWork
146 https://www.grid.ac/institutes/grid.9531.e schema:alternateName Heriot-Watt University
147 schema:name Department of Actuarial Mathematics and Statistics Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...