Interpolation Problems for Certain Classes of Slice Hyperholomorphic Functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10

AUTHORS

Daniel Alpay, Vladimir Bolotnikov, Fabrizio Colombo, Irene Sabadini

ABSTRACT

A general interpolation problem (which includes as particular cases the Nevanlinna–Pick and Carathéodory–Fejér interpolation problems) is considered in two classes of slice hyperholomorphic functions of the unit ball of the quaternions. In the Hardy space of the unit ball we present a Beurling–Lax type parametrization of all solutions, and the formula for the minimal norm solution. In the class of functions slice hyperholomorphic in the unit ball and bounded by one in modulus there (that is, in the class of Schur functions in the present framework) we present a necessary and sufficient condition for the problem to have a solution, and describe the set of all solutions in the indeterminate case. More... »

PAGES

165-183

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00020-016-2318-x

DOI

http://dx.doi.org/10.1007/s00020-016-2318-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017360662


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chapman University", 
          "id": "https://www.grid.ac/institutes/grid.254024.5", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel", 
            "Department of Mathematics, Chapman University, One University Drive, 92866, Orange, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Colombo", 
        "givenName": "Fabrizio", 
        "id": "sg:person.013561650201.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561650201.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4643.5", 
          "name": [
            "Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133, Milan, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sabadini", 
        "givenName": "Irene", 
        "id": "sg:person.012706644555.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706644555.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.aim.2007.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000375034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1932-1501650-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001462850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-003-1230-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003408273", 
          "https://doi.org/10.1007/s00020-003-1230-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1006542413", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33871-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006542413", 
          "https://doi.org/10.1007/978-3-642-33871-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33871-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006542413", 
          "https://doi.org/10.1007/978-3-642-33871-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1008167419", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0110-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008167419", 
          "https://doi.org/10.1007/978-3-0348-0110-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-0110-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008167419", 
          "https://doi.org/10.1007/978-3-0348-0110-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11854-013-0028-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011430515", 
          "https://doi.org/10.1007/s11854-013-0028-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-02-06899-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022500950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-008-1626-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022973028", 
          "https://doi.org/10.1007/s00020-008-1626-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8944-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023985168", 
          "https://doi.org/10.1007/978-3-0348-8944-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(94)00074-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1031294171", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-42514-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031294171", 
          "https://doi.org/10.1007/978-3-319-42514-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-011-1935-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035040449", 
          "https://doi.org/10.1007/s00020-011-1935-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-014-2184-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035953438", 
          "https://doi.org/10.1007/s00020-014-2184-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01202702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037541323", 
          "https://doi.org/10.1007/bf01202702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crelle.2010.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040388120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2010.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042267453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.2015.64.5456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067514310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1951.1.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069062174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511623943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098701164"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10", 
    "datePublishedReg": "2016-10-01", 
    "description": "A general interpolation problem (which includes as particular cases the Nevanlinna\u2013Pick and Carath\u00e9odory\u2013Fej\u00e9r interpolation problems) is considered in two classes of slice hyperholomorphic functions of the unit ball of the quaternions. In the Hardy space of the unit ball we present a Beurling\u2013Lax type parametrization of all solutions, and the formula for the minimal norm solution. In the class of functions slice hyperholomorphic in the unit ball and bounded by one in modulus there (that is, in the class of Schur functions in the present framework) we present a necessary and sufficient condition for the problem to have a solution, and describe the set of all solutions in the indeterminate case.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00020-016-2318-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Interpolation Problems for Certain Classes of Slice Hyperholomorphic Functions", 
    "pagination": "165-183", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "52b68ba4372cefeb2d7c59cc5d6baab3b762eaa19a08b23e9342fa737faed670"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00020-016-2318-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017360662"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00020-016-2318-x", 
      "https://app.dimensions.ai/details/publication/pub.1017360662"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00020-016-2318-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2318-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2318-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2318-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00020-016-2318-x'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00020-016-2318-x schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N8d5f1d3cc030461cb19e3ebf3a6773ff
4 schema:citation sg:pub.10.1007/978-3-0348-0110-2
5 sg:pub.10.1007/978-3-0348-7709-1
6 sg:pub.10.1007/978-3-0348-8944-5_13
7 sg:pub.10.1007/978-3-319-42514-6
8 sg:pub.10.1007/978-3-642-33871-7
9 sg:pub.10.1007/bf01202702
10 sg:pub.10.1007/s00020-003-1230-3
11 sg:pub.10.1007/s00020-008-1626-1
12 sg:pub.10.1007/s00020-011-1935-7
13 sg:pub.10.1007/s00020-014-2184-3
14 sg:pub.10.1007/s11854-013-0028-8
15 https://app.dimensions.ai/details/publication/pub.1006542413
16 https://app.dimensions.ai/details/publication/pub.1008167419
17 https://app.dimensions.ai/details/publication/pub.1031294171
18 https://app.dimensions.ai/details/publication/pub.1043632982
19 https://doi.org/10.1016/0024-3795(94)00074-n
20 https://doi.org/10.1016/j.aim.2007.05.010
21 https://doi.org/10.1016/j.aim.2010.08.015
22 https://doi.org/10.1017/cbo9780511623943
23 https://doi.org/10.1090/s0002-9939-02-06899-5
24 https://doi.org/10.1090/s0002-9947-1932-1501650-3
25 https://doi.org/10.1512/iumj.2015.64.5456
26 https://doi.org/10.1515/crelle.2010.060
27 https://doi.org/10.2140/pjm.1951.1.329
28 schema:datePublished 2016-10
29 schema:datePublishedReg 2016-10-01
30 schema:description A general interpolation problem (which includes as particular cases the Nevanlinna–Pick and Carathéodory–Fejér interpolation problems) is considered in two classes of slice hyperholomorphic functions of the unit ball of the quaternions. In the Hardy space of the unit ball we present a Beurling–Lax type parametrization of all solutions, and the formula for the minimal norm solution. In the class of functions slice hyperholomorphic in the unit ball and bounded by one in modulus there (that is, in the class of Schur functions in the present framework) we present a necessary and sufficient condition for the problem to have a solution, and describe the set of all solutions in the indeterminate case.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N35c17c9fe27a45138a405eb237424565
35 N93eccee3d52f430f89a538d384945763
36 sg:journal.1136245
37 schema:name Interpolation Problems for Certain Classes of Slice Hyperholomorphic Functions
38 schema:pagination 165-183
39 schema:productId N1f5f48dbcefa4bdfa63ca4f03861884e
40 N610f3e6bd063405ab19722942070df97
41 Nb315cfe238d3496c9d49d1f60a222000
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017360662
43 https://doi.org/10.1007/s00020-016-2318-x
44 schema:sdDatePublished 2019-04-11T12:23
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N01d4ea8aede74eb5a274fc6cdace9581
47 schema:url https://link.springer.com/10.1007%2Fs00020-016-2318-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N01d4ea8aede74eb5a274fc6cdace9581 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N1f5f48dbcefa4bdfa63ca4f03861884e schema:name doi
54 schema:value 10.1007/s00020-016-2318-x
55 rdf:type schema:PropertyValue
56 N2f1a28b208844b7099de6771a6282526 rdf:first sg:person.01130533744.43
57 rdf:rest Ne7ba29fd4ee543dbbac379d49087cfe3
58 N35c17c9fe27a45138a405eb237424565 schema:volumeNumber 86
59 rdf:type schema:PublicationVolume
60 N610f3e6bd063405ab19722942070df97 schema:name dimensions_id
61 schema:value pub.1017360662
62 rdf:type schema:PropertyValue
63 N83a0236e3f644ff8914c19197b39a745 rdf:first sg:person.012706644555.06
64 rdf:rest rdf:nil
65 N8d5f1d3cc030461cb19e3ebf3a6773ff rdf:first sg:person.011517101346.40
66 rdf:rest N2f1a28b208844b7099de6771a6282526
67 N93eccee3d52f430f89a538d384945763 schema:issueNumber 2
68 rdf:type schema:PublicationIssue
69 Nb315cfe238d3496c9d49d1f60a222000 schema:name readcube_id
70 schema:value 52b68ba4372cefeb2d7c59cc5d6baab3b762eaa19a08b23e9342fa737faed670
71 rdf:type schema:PropertyValue
72 Ne7ba29fd4ee543dbbac379d49087cfe3 rdf:first sg:person.013561650201.19
73 rdf:rest N83a0236e3f644ff8914c19197b39a745
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
78 schema:name Numerical and Computational Mathematics
79 rdf:type schema:DefinedTerm
80 sg:journal.1136245 schema:issn 0378-620X
81 1420-8989
82 schema:name Integral Equations and Operator Theory
83 rdf:type schema:Periodical
84 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
85 schema:familyName Bolotnikov
86 schema:givenName Vladimir
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
88 rdf:type schema:Person
89 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.254024.5
90 schema:familyName Alpay
91 schema:givenName Daniel
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
93 rdf:type schema:Person
94 sg:person.012706644555.06 schema:affiliation https://www.grid.ac/institutes/grid.4643.5
95 schema:familyName Sabadini
96 schema:givenName Irene
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706644555.06
98 rdf:type schema:Person
99 sg:person.013561650201.19 schema:affiliation https://www.grid.ac/institutes/grid.4643.5
100 schema:familyName Colombo
101 schema:givenName Fabrizio
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013561650201.19
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-0348-0110-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008167419
105 https://doi.org/10.1007/978-3-0348-0110-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
108 https://doi.org/10.1007/978-3-0348-7709-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-0348-8944-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023985168
111 https://doi.org/10.1007/978-3-0348-8944-5_13
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-319-42514-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031294171
114 https://doi.org/10.1007/978-3-319-42514-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-642-33871-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006542413
117 https://doi.org/10.1007/978-3-642-33871-7
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01202702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037541323
120 https://doi.org/10.1007/bf01202702
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00020-003-1230-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003408273
123 https://doi.org/10.1007/s00020-003-1230-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00020-008-1626-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022973028
126 https://doi.org/10.1007/s00020-008-1626-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00020-011-1935-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035040449
129 https://doi.org/10.1007/s00020-011-1935-7
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00020-014-2184-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035953438
132 https://doi.org/10.1007/s00020-014-2184-3
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11854-013-0028-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011430515
135 https://doi.org/10.1007/s11854-013-0028-8
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1006542413 schema:CreativeWork
138 https://app.dimensions.ai/details/publication/pub.1008167419 schema:CreativeWork
139 https://app.dimensions.ai/details/publication/pub.1031294171 schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
141 https://doi.org/10.1016/0024-3795(94)00074-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446739
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.aim.2007.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000375034
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.aim.2010.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042267453
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1017/cbo9780511623943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098701164
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1090/s0002-9939-02-06899-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022500950
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1090/s0002-9947-1932-1501650-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001462850
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1512/iumj.2015.64.5456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067514310
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1515/crelle.2010.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040388120
156 rdf:type schema:CreativeWork
157 https://doi.org/10.2140/pjm.1951.1.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069062174
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.254024.5 schema:alternateName Chapman University
160 schema:name Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
161 Department of Mathematics, Chapman University, One University Drive, 92866, Orange, CA, USA
162 rdf:type schema:Organization
163 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
164 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
165 rdf:type schema:Organization
166 https://www.grid.ac/institutes/grid.4643.5 schema:alternateName Polytechnic University of Milan
167 schema:name Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi, 9, 20133, Milan, Italy
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...